Pan-third-polar environmental change and green silk road construction

Brief Introduction: Pan-third-polar environmental change and green silk road construction

Number of Datasets: 1199

  • Dataset of agricultural water resources vulnerability in Central Asia (V1.0)

    Dataset of agricultural water resources vulnerability in Central Asia (V1.0)

    In order to investigate the variation characteristics of agricultural water resources vulnerability in Central Asia, an index system was established with 18 indicators from three components, namely exposure, sensitivity and adaptation, according to the scheme of vulnerability assessment. Based on the socio-economic, topography, land cover and soil data, agricultural water resources vulnerability were calculated using the Equal-Weights and Principal Component Analysis (PCA) method. Each original raster data is resampled, starting from the upper-left corner of the original grid, and extending to the adjacent right and lower grids in turn, and every four grids (0.5 °) are merged into one grid, taking the median data as the center point value corresponding to four grid of geographic coordinates. The extreme values of the grids could be eliminated. The data sets includes 1992-1996, 1997-2001, 2002-2006, 2007-2011, 2012-2017and 1992-2017with a spatial resolution of 0.5°*0.5°. It is expected to provide basic data support for agricultural water supply and demand, development and utilization analysis in five central Asian countries.

    2021-06-21 780 66

  • Water index in the Qilian Mountain Area in 2020

    Water index in the Qilian Mountain Area in 2020

    This dataset contains the ground surface water (including liquid water, glacier and perennial snow) distribution in Qilian Mountain Area in 2020. The dataset was produced based on classical Normalized Difference Water Index (NDWI) extraction criterion and manual editing. Landsat images collected in 2020 were used as basic data for water index extraction. Sentinel-2 images and Google images were employed as reference data for adjusting the extraction threshold. The dataset was stored in SHP format and attached with the attributions of coordinates and water area. Consisting of 1 season, the dataset has a temporal resolution of 1 year and a spatial resolution of 30 meters. The accuracy is about 1 pixel (±30 meter). The dataset directly reflects the distribution of water bodies within the Qilian Mountain in 2020, and can be used for quantitative estimation of water resource.

    2021-06-17 457 0

  • Glacier boundary in Qilian Mountains (V2.0, 2019)

    Glacier boundary in Qilian Mountains (V2.0, 2019)

    This dataset contains the glacier outlines in Qilian Mountain Area in 2019. The dataset was produced based on classical band ratio criterion and manual editing. Chinese GF series images collected in 2019 were used as basic data for glacier extraction. Google images and Map World images were employed as reference data for manual adjusting. The dataset was stored in SHP format and attached with the attributions of coordinates, glacier ID and glacier area. Consisting of 1 season, the dataset has a spatial resolution of 2 meters. The accuracy is about 1 pixel (±2 meter). The dataset directly reflects the glacier distribution within the Qilian Mountain in 2019, and can be used for quantitative estimation of glacier mass balance and the quantitative assessment of glacier change’s impact on basin runoff.

    2021-06-15 669 0

  • Glacier inventory of Qilian Mountain Area (2020)

    Glacier inventory of Qilian Mountain Area (2020)

    This dataset contains the glacier outlines in Qilian Mountain Area in 2020. The dataset was produced based on classical band ratio criterion and manual editing. Chinese GF series images collected in 2020 were used as basic data for glacier extraction. Google images and Map World images were employed as reference data for manual adjusting. The dataset was stored in SHP format and attached with the attributions of coordinates, glacier ID and glacier area. Consisting of 1 season, the dataset has a spatial resolution of 2 meters. The accuracy is about 1 pixel (±2 meter). The dataset directly reflects the glacier distribution within the Qilian Mountain in 2020, and can be used for quantitative estimation of glacier mass balance and the quantitative assessment of glacier change’s impact on basin runoff.

    2021-06-15 946 0

  • Qilian Mountains integrated observatory network: Dataset of Heihe integrated observatory network (Large aperture scintillometer of A'rou Superstation, 2020)

    Qilian Mountains integrated observatory network: Dataset of Heihe integrated observatory network (Large aperture scintillometer of A'rou Superstation, 2020)

    This dataset contains the flux measurements from the large aperture scintillometer (LAS) at Arou Superstation in the Heihe integrated observatory network from January 18 to December 31 in 2020. There were two types of LASs at Arou Superstation: BLS900 and RR-RSS460, produced by Germany and China, respectively. The north tower was set up with the RR-RSS460 receiver and the BLS900 transmitter, and the south tower was equipped with the RR-RSS460 transmitter and the BLS900 receiver. The site (north: 100.471° E, 38.057° N; south: 100.457° E, 38.038° N) was located in Caodaban village of A’rou town in Qilian county, Qinghai Province. The underlying surface between the two towers was alpine meadow. The elevation is 3033 m. The effective height of the LASs was 13.0 m, and the path length was 2390 m. The data were sampled 1 minute at both BLS900 and RR-RSS460. The raw data acquired at 1 min intervals were processed and quality controlled. The data were subsequently averaged over 30 min periods, in which sensible heat flux was iteratively calculated by combining Cn2 with meteorological data according to the Monin-Obukhov similarity theory. The main quality control steps were as follows: (1) The data were rejected when Cn2 exceeded the saturated criterion (BLS900: Cn2>7.25E-14, RR-RSS460: Cn2>7.84E-14). (2) The data were rejected when the demodulation signal was small (BLS900: Average X Intensity<1000; RR-RSS460: Demod>-20mv). (3) The data were rejected when collected during precipitation. (4) The data were rejected if collected at night when weak turbulence occurred (u* was less than 0.1 m/s). In the iteration process, the universal functions of Thiermann and Grassl (1992) and Andreas (1988) were selected for BLS900 and RR-RSS460, respectively. Detailed can refer to Liu et al. (2011, 2013). Due to instrument adjustment and inadequate power supply, the date of missing data for the large aperture scintillator is:2020.09.25-2020.10.16. Several instructions were included with the released data. (1) The data were primarily obtained from BLS900 measurements, and missing flux measurements from the BLS900 instrument were substituted with measurements from the RR-RSS460 instrument. The missing data were denoted by -6999. Due to the problems of storing and wireless transmission. (2) The dataset contained the following variables: Date/time (yyyy/m/d h:mm), the structural parameter of the air refractive index (Cn2, m-2/3), and the sensible heat flux (H, W/m^2). In this dataset, a time of 0:30 corresponds to the average data for the period between 0:00 and 0:30, and the data were stored in *.xlsx format. Moreover, suspicious data were marked in red. For more information, please refer to Liu et al. (2018) (for sites information), Liu et al. (2011) (for data processing) in the Citation section.

    2021-06-11 757 20

  • Daily MODIS-based Land Surface Evapotranspiration Dataset of 2020 in Qilian Mountain Area (ETHi-merge V1.0)

    Daily MODIS-based Land Surface Evapotranspiration Dataset of 2020 in Qilian Mountain Area (ETHi-merge V1.0)

    This dataset contains daily land surface evapotranspiration products of 2020 in Qilian Mountain area. It has 0.01 degree spatial resolution. The dataset was produced based on Gaussian Process Regression (GPR) method by fusing six satellite-derived evapotranspiration products including RS-PM (Mu et al., 2011), SW (Shuttleworth and Wallace., 1985), PT-JPL (Fisher et al., 2008), MS-PT (Yao et al., 2013), SEMI-PM (Wang et al., 2010a) and SIM (Wang et al.2008). The input variables for the evapotranspiration products include MODIS products, MERRA meteorological data, and China Meteorological Forcing Dataset.

    2021-06-09 856 64

  • Qilian Mountains integrated observatory network: Dataset of Heihe integrated observatory network (eddy covariance system of mixed forest station, 2020)

    Qilian Mountains integrated observatory network: Dataset of Heihe integrated observatory network (eddy covariance system of mixed forest station, 2020)

    This dataset contains the flux measurements from the mixed forest station eddy covariance system (EC) in the downstream reaches of the Heihe integrated observatory network from January 1 to December 31 in 2020. The site (101.1335° E, 41.9903° N) was located in the Sidaoqiao County, in Ejina Banner in Inner Mongolia Autonomous Region . The elevation is 874 m. The EC was installed at a height of 3.2 m, and the sampling rate was 10 Hz. The sonic anemometer faced north, and the separation distance between the sonic anemometer and the CO2/H2O gas analyzer (CSAT3B & Li7500DS) was 0.17 m. The raw data acquired at 10 Hz were processed using the Eddypro post-processing software, including the spike detection, lag correction of H2O/CO2 relative to the vertical wind component, sonic virtual temperature correction, coordinate rotation (2-D rotation), corrections for density fluctuation (Webb-Pearman-Leuning correction), and frequency response correction. The EC data were subsequently averaged over 30 min periods. The observation data quality was divided into three classes according to the quality assessment method of stationarity (Δst) and the integral turbulent characteristics test (ITC): class 1-3 (high quality), class 4-6 (good), class 7-8 (poor, better than gap filling data), class9 (rejected). In addition to the above processing steps, the half-hourly flux data were screened in a four-step procedure: (1) data from periods of sensor malfunction were rejected; (2) data collected before or after 1 h of precipitation were rejected; (3) incomplete 30 min data were rejected when the missing data constituted more than 10% of the 30 min raw record. There were 48 records per day, and the missing data were replaced with -6999. Suspicious data were marked in red. The water vapor density data were rejected when the negative values occurred. Data during May 8 to 20, 2020 were missing due to instrument malfunction. The released data contained the following variables: data/time, wind direction (Wdir, °), wind speed (Wnd, m/s), the standard deviation of the lateral wind (Std_Uy, m/s), virtual temperature (Tv, ℃), H2O mass density (H2O, g/m3), CO2 mass density (CO2, mg/m3), friction velocity (ustar, m/s), stability (L), sensible heat flux (Hs, W/m2), latent heat flux (LE, W/m2), carbon dioxide flux (Fc, mg/ (m2s)), quality assessment of the sensible heat flux (QA_Hs), quality assessment of the latent heat flux (QA_LE), and quality assessment of the carbon flux (QA_Fc). In this dataset, the time of 0:30 corresponds to the average data for the period between 0:00 and 0:30; the data were stored in *.xls format. Detailed information can be found in the suggested references. For more information, please refer to Liu et al. (2018) (for sites information), Liu et al. (2011) for data processing) in the Citation section.

    2021-06-09 829 56

  • Qilian Mountains integrated observatory network: Dataset of Qinghai Lake integrated observatory network (an observation system of Meteorological elements gradient of Alpine meadow and grassland ecosystem Superstation, 2020)

    Qilian Mountains integrated observatory network: Dataset of Qinghai Lake integrated observatory network (an observation system of Meteorological elements gradient of Alpine meadow and grassland ecosystem Superstation, 2020)

    This dataset includes data recorded by the Qinghai Lake integrated observatory network obtained from an observation system of Meteorological elements gradient of the Alpine meadow and grassland ecosystem Superstation from Janurary 1 to December 31 in 2020. The site (98°35′41.62″E, 37°42′11.47″N) was located in the alpine meadow and alpine grassland ecosystem, near the SuGe Road in Tianjun County, Qinghai Province. The elevation is 3718m. The installation heights and orientations of different sensors and measured quantities were as follows: air temperature and humidity profile (HMP155; 3, 5, 10, 15, 20, 30, and 40 m, towards north), wind speed and direction profile (windsonic; 3, 5, 10, 15, 20, 30, and 40 m, towards north), air pressure (PTB110; 3 m), rain gauge (TE525M; 10m of the platform in west by north of tower), four-component radiometer (CNR4; 6m, towards south), two infrared temperature sensors (SI-111; 6 m, towards south, vertically downward), photosynthetically active radiation (PQS1; 6 m, towards south, each with one vertically downward and one vertically upward, soil heat flux (HFP01; 3 duplicates below the vegetation; -0.06 m), soil temperature profile (109; -0.05、-0.10、-0.20、-0.40、-0.80、-1.20、-2.00、-3.00 and -4.00m), soil moisture profile (CS616; -0.05、-0.10、-0.20、-0.40、-0.80、-1.20、-2.00、-3.00 and -4.00m). The observations included the following: air temperature and humidity (Ta_3 m, Ta_5 m, Ta_10 m, Ta_15 m, Ta_20 m, Ta_30 m, and Ta_40 m; RH_3 m, RH_5 m, RH_10 m, RH_15 m, RH_20 m, RH_30 m, and RH_40 m) (℃ and %, respectively), wind speed (Ws_3 m, Ws_5 m, Ws_10 m, Ws_15 m, Ws_20 m, Ws_30 m, and Ws_40 m) (m/s), wind direction (WD_3 m, WD_5 m, WD_10 m, WD_15 m, WD_20 m, WD_30m, and WD_40 m) (°), precipitation (rain) (mm), air pressure (press) (hpa), infrared temperature (IRT_1 and IRT_2) (℃), photosynthetically active radiation of upward and downward (PAR_D_up and PAR_D_down) (μmol/ (s m-2)), four-component radiation (DR, incoming shortwave radiation; UR, outgoing shortwave radiation; DLR_Cor, incoming longwave radiation; ULR_Cor, outgoing longwave radiation; Rn, net radiation) (W/m^2), soil heat flux (Gs_1, Gs_2, and Gs_3) (W/m^2), soil temperature (Ts_5cm、Ts_10cm、Ts_20cm、Ts_40cm、Ts_80cm、Ts_120cm、Ts_200cm、Ts_300cm、Ts_400cm) (℃), soil moisture (Ms_5cm、Ms_10cm、Ms_20cm、Ms_40cm、Ms_80cm、Ms_120cm、Ms_200cm、Ms_300cm、Ms_400cm) (%, volumetric water content). The data processing and quality control steps were as follows: (1) The AWS data were averaged over intervals of 10 min for a total of 144 records per day. The missing data were denoted by -6999. (2) Data in duplicate records were rejected. (3) Unphysical data were rejected. (4) The data marked in red are problematic data. (5) The format of the date and time was unified, and the date and time were collected in the same column, for example, date and time: 2018/8/31 10:30. Moreover, suspicious data were marked in red.

    2021-06-08 942 59

  • Qilian Mountains integrated observatory network: Dataset of Qinghai Lake integrated observatory network (an observation system of Meteorological elements gradient of Yulei station on Qinghai lake, 2020)

    Qilian Mountains integrated observatory network: Dataset of Qinghai Lake integrated observatory network (an observation system of Meteorological elements gradient of Yulei station on Qinghai lake, 2020)

    This dataset includes data recorded by the Qinghai Lake integrated observatory network obtained from an observation system of Meteorological elements gradient of Yulei station on Qinghai lake from Janurary 1 to December 31, 2020. The site (100° 29' 59.726'' E, 36° 35' 27.337'' N) was located on the Yulei Platform in Erlangjian scenic area, Qinghai Province. The elevation is 3209m. The installation heights and orientations of different sensors and measured quantities were as follows: air temperature and humidity profile (HMP155; 12 and 12.5 m above the water surface, towards north), wind speed and direction profile (windsonic; 14 m above the water surface, towards north) , rain gauge (TE525M; 10m above the water surface in the eastern part of the Yulei platform ), four-component radiometer (NR01; 10 m above the water surface, towards south), one infrared temperature sensors (SI-111; 10 m above the water surface, towards south, vertically downward), photosynthetically active radiation (LI190SB; 10 m above the water surface, towards south), water temperature profile (109, -0.2, -0.5, -1.0, -2.0, and -3.0 m). The observations included the following: air temperature and humidity (Ta_12 m, Ta_12.5 m; RH_12 m, RH_12.5 m) (℃ and %, respectively), wind speed (Ws_14 m) (m/s), wind direction (WD_14 m) (°) , precipitation (rain) (mm), four-component radiation (DR, incoming shortwave radiation; UR, outgoing shortwave radiation; DLR_Cor, incoming longwave radiation; ULR_Cor, outgoing longwave radiation; Rn, net radiation) (W/m^2), infrared temperature (IRT_1) (℃), photosynthetically active radiation (PAR) (μmol/ (s m-2)), water temperature (Tw_20cm、Tw_50cm、Tw_100cm、Tw_200cm、Tw_300cm) (℃). The data processing and quality control steps were as follows: (1) The AWS data were averaged over intervals of 10 min for a total of 144 records per day. As the lake water freezes in winter, the water temperature probe is withdrawn, so there is no water temperature data record during October 19, 2020 to December 31, 2020. The missing data were denoted by -6999. (2) Data in duplicate records were rejected. (3) Unphysical data were rejected. (4) The data marked in red are problematic data. (5) The format of the date and time was unified, and the date and time were collected in the same column, for example, date and time: 2018-1-1 10:30. Moreover, suspicious data were marked in red.

    2021-06-08 880 59

  • Qilian Mountains integrated observatory network: Dataset of Qinghai Lake integrated observatory network (an observation system of Meteorological elements gradient of the temperate steppe, 2020

    Qilian Mountains integrated observatory network: Dataset of Qinghai Lake integrated observatory network (an observation system of Meteorological elements gradient of the temperate steppe, 2020

    This dataset includes data recorded by the Qinghai Lake integrated observatory network obtained from an observation system of Meteorological elements gradient from Janurary 1 to December 31 in 2020. The site (100°14'8.99"E, 37°14'49.00"N) was located in Sanjiaocheng sheep breeding farm, Gangcha County, Qinghai Province. The elevation is 3210m.The installation heights and orientations of different sensors and measured quantities were as follows: air temperature and humidity profile (HMP155; 3, 5, 10 m, towards north), wind speed and direction profile (windsonic; 3, 5, 10m, towards north), air pressure (PTB110; 3 m), rain gauge (TE525M; towards north), four-component radiometer (CNR4; 6m, towards south), two infrared temperature sensors (SI-111; 6 m, towards south, vertically downward), photosynthetically active radiation (PQS1; 6 m, towards south, each with one vertically downward and one vertically upward, soil heat flux (HFP01; 3 duplicates below the vegetation; -0.06 m), soil temperature profile (109; -0.05、-0.10、-0.20、-0.40、-0.80、-1.20、-2.00、-3.00 and -5.00m), soil moisture profile (CS616; -0.05、-0.10、-0.20、-0.40、-0.80、-1.20、-2.00、-3.00 and -5.00m). The observations included the following: air temperature and humidity (Ta_3 m, Ta_5 m, Ta_10 m; RH_3 m, RH_5 m, RH_10 m) (℃ and %, respectively), wind speed (Ws_3 m, Ws_5 m, Ws_10 m) (m/s), wind direction (WD_3 m, WD_5 m, WD_10 m) (°), precipitation (rain) (mm), air pressure (press) (hpa), infrared temperature (IRT_1 and IRT_2) (℃), photosynthetically active radiation of upward and downward (PAR_D_up and PAR_D_down) (μmol/ (s m-2)), four-component radiation (DR, incoming shortwave radiation; UR, outgoing shortwave radiation; DLR_Cor, incoming longwave radiation; ULR_Cor, outgoing longwave radiation; Rn, net radiation) (W/m^2), soil heat flux (Gs_1, Gs_2, and Gs_3) (W/m^2), soil temperature (Ts_5cm、Ts_10cm、Ts_20cm、Ts_40cm、Ts_80cm、Ts_120cm、Ts_200cm、Ts_300cm、Ts_400cm) (℃), soil moisture (Ms_5cm、Ms_10cm、Ms_20cm、Ms_40cm、Ms_80cm、Ms_120cm、Ms_200cm、Ms_300cm、Ms_400cm) (%, volumetric water content). The data processing and quality control steps were as follows: (1) The AWS data were averaged over intervals of 10 min for a total of 144 records per day. The missing data were denoted by -6999. (2) Data in duplicate records were rejected. (3) Unphysical data were rejected. (4) The data marked in red are problematic data. (5) The format of the date and time was unified, and the date and time were collected in the same column, for example, date and time: 2018/8/31 10:30.

    2021-06-08 773 29

  • Qilian Mountains integrated observatory network: Dataset of Qinghai Lake integrated observatory network (an observation system of Meteorological elements gradient of Subalpine shrub, 2020

    Qilian Mountains integrated observatory network: Dataset of Qinghai Lake integrated observatory network (an observation system of Meteorological elements gradient of Subalpine shrub, 2020

    This dataset includes data recorded by the Qinghai Lake integrated observatory network obtained from an observation system of Meteorological elements gradient of the Subalpine shrub from Janurary 1to December 31, 2020. The site (100°6'3.62"E, 37°31'15.67") was located in the subalpine shrub ecosystem, near the Gangcha County, Qinghai Province. The elevation is 3495m. The installation heights and orientations of different sensors and measured quantities were as follows: air temperature and humidity profile (HMP155; 3, 5 and 10 m, towards north), wind speed and direction profile (windsonic; 3, 5 and 10 m, towards north), air pressure (PTB110; 3 m), rain gauge (TE525M; 2 m of the platform in west by north of tower), four-component radiometer (CNR4; 6m, towards south), two infrared temperature sensors (SI-111; 6 m, towards south, vertically downward), photosynthetically active radiation (PQS1; 6 m, towards south, each with one vertically downward and one vertically upward, soil heat flux (HFP01; 3 duplicates below the vegetation; -0.06 m), soil temperature profile (109; -0.05、-0.10、-0.20、-0.40、-0.80、-1.20、-2.00、-3.00 and -4.00m), soil moisture profile (CS616; -0.05、-0.10、-0.20、-0.40、-0.80、-1.20、-2.00、-3.00 and -4.00m). The observations included the following: air temperature and humidity (Ta_3 m, Ta_5 m, and Ta_10 m; RH_3 m, RH_5 m, and RH_10 m) (℃ and %, respectively), wind speed (Ws_3 m, Ws_5 m, and Ws_10 m) (m/s), wind direction (WD_3 m, WD_5 m and WD_10 m) (°), precipitation (rain) (mm), air pressure (press) (hpa), infrared temperature (IRT_1 and IRT_2) (℃), photosynthetically active radiation of upward and downward (PAR_D_up and PAR_D_down) (μmol/ (s m-2)), four-component radiation (DR, incoming shortwave radiation; UR, outgoing shortwave radiation; DLR_Cor, incoming longwave radiation; ULR_Cor, outgoing longwave radiation; Rn, net radiation) (W/m^2), soil heat flux (Gs_1, Gs_2, and Gs_3) (W/m^2), soil temperature (Ts_5cm、Ts_10cm、Ts_20cm、Ts_40cm、Ts_80cm、Ts_120cm、Ts_200cm、Ts_300cm、Ts_500cm) (℃), soil moisture (Ms_5cm、Ms_10cm、Ms_20cm、Ms_40cm、Ms_80cm、Ms_120cm、Ms_200cm、Ms_300cm、Ms_500cm) (%, volumetric water content). The data processing and quality control steps were as follows: (1) The AWS data were averaged over intervals of 10 min for a total of 144 records per day. The missing data were denoted by -6999. (2) Data in duplicate records were rejected. (3) Unphysical data were rejected. (4) The data marked in red are problematic data. (5) The format of the date and time was unified, and the date and time were collected in the same column, for example, date and time: 2018/8/31 10:30. Moreover, suspicious data were marked in red.

    2021-06-08 792 53

  • Daily 0.05°×0.05° land surface soil moisture dataset of Qilian Mountain area  (2019,SMHiRes,V2)

    Daily 0.05°×0.05° land surface soil moisture dataset of Qilian Mountain area (2019,SMHiRes,V2)

    This dataset contains daily 0.05°×0.05° land surface soil moisture products in Qilian Mountain Area in 2019. The dataset was produced by utilizing the optimized wavelet-coupled-RF downscaling model (RF-OWCM) to downscale the “AMSR-E and AMSR2 TB-based SMAP Time-Expanded Daily 0.25°×0.25° Land Surface Soil Moisture Dataset in Qilian Mountain Area (SMsmapTE, V1)”. The auxiliary datasets participating in the downscaling model include GLASS Albedo/LAI/FVC, Thermal and Reanalysis Integrating Medium-resolution Spatial-seamless LST – Tibetan Plateau (TRIMS LST-TP) by Ji Zhou and Lat/Lon information.

    2021-06-04 618 93

  • Cold and Arid Research Network of Lanzhou University (an  observation system of Meteorological elements gradient of Dunhuang Station, 2020)

    Cold and Arid Research Network of Lanzhou University (an observation system of Meteorological elements gradient of Dunhuang Station, 2020)

    This dataset includes data recorded by the Cold and Arid Research Network of Lanzhou university obtained from an observation system of Meteorological elements gradient of Dunhuang Station from January 1 to December 31, 2020. The site (93.708° E, 40.348° N) was located on a wetland in the Dunhuang west lake, Gansu Province. The elevation is 990 m. The installation heights and orientations of different sensors and measured quantities were as follows: air temperature and humidity profile (4m and 8 m, towards north), wind speed and direction profile (windsonic; 4m and 8 m, towards north), air pressure (1 m), rain gauge (4 m), infrared temperature sensors (4 m, towards south, vertically downward), soil heat flux (-0.05 and -0.1m ), soil soil temperature/ moisture/ electrical conductivity profile (below the vegetation in the south of tower, -0.05 and -0.2 m), photosynthetically active radiation (4 m, towards south), four-component radiometer (4 m, towards south), sunshine duration sensor(4 m, towards south). The observations included the following: air temperature and humidity (Ta_4 m, Ta_8 m; RH_2 m, RH_4 m, RH_8 m) (℃ and %, respectively), wind speed (Ws_4 m, Ws_8 m) (m/s), wind direction (WD_4 m, WD_8 m) (°), air pressure (press) (hpa), precipitation (rain) (mm), four-component radiation (DR, incoming shortwave radiation; UR, outgoing shortwave radiation; DLR_Cor, incoming longwave radiation; ULR_Cor, outgoing longwave radiation; Rn, net radiation) (W/m^2), infrared temperature (IRT) (℃), photosynthetically active radiation (PAR) (μmol/ (s m-2)), soil heat flux (Gs_0.05m, Gs_0.1m) (W/m^2), soil temperature (Ts_0.05m, Ts_0.2m) (℃), soil moisture (Ms_0.05m, Ms_0.2m) (%, volumetric water content), soil conductivity (Ec_0.05m, Ec_0.2m)(μs/cm), sun time(h). The data processing and quality control steps were as follows: (1) The AWS data were averaged over intervals of 10 min for a total of 144 records per day and missing records were denoted by -6999.. (3) Unphysical data were rejected. (4) The data marked in red are problematic data. (5) The format of the date and time was unified, and the date and time were collected in the same column.

    2021-06-04 544 84

  • Cold and Arid Research Network of Lanzhou university (an observation system of Meteorological elements gradient of Minqin Station, 2020)

    Cold and Arid Research Network of Lanzhou university (an observation system of Meteorological elements gradient of Minqin Station, 2020)

    This dataset includes data recorded by the Cold and Arid Research Network of Lanzhou university obtained from an observation system of Meteorological elements gradient of Minqin Station from August 16 to December 31, 2020. The site (103.668E, 39.208N) was located on a alpine meadow in the Wuwei, Gansu Province. The elevation is 1020 m. The installation heights and orientations of different sensors and measured quantities were as follows: air temperature and humidity profile (4 and 8 m, towards north), wind speed and direction profile (windsonic; 4, and 8 m, towards north), air pressure (1.5 m), rain gauge (4 m), four-component radiometer (4 m, towards south), infrared temperature sensors (4 m, towards south, vertically downward), photosynthetically active radiation (4 m, towards south), soil heat flux (-0.05 m and -0.1m in south of tower), soil soil temperature/ moisture/ electrical conductivity profile (-0.2 and -0.4 m in south of tower), sunshine duration sensor (4 m, towards south). The observations included the following: air temperature and humidity (Ta_4 m, and Ta_8 m; RH_4 m, and RH_8 m) (℃ and %, respectively), wind speed (Ws_4 m, and Ws_8 m) (m/s), wind direction (WD_4 m, and WD_8 m) (°), air pressure (press) (hpa), precipitation (rain) (mm), four-component radiation (DR, incoming shortwave radiation; UR, outgoing shortwave radiation; DLR_Cor, incoming longwave radiation; ULR_Cor, outgoing longwave radiation; Rn, net radiation) (W/m^2), infrared temperature (IRT) (℃), photosynthetically active radiation (PAR) (μmol/ (s/m^2)), soil heat flux (Gs_5 cm, Gs_10cm) (W/m^2), soil temperature (Ts_10 cm, Ts_20 cm) (℃), soil moisture (Ms_10 cm, Ms_20 cm) (%, volumetric water content), soil water potential (SWP_10cm , SWP_20cm)(kpa) , soil conductivity (Ec_10cm, Ec_20cm)(μs/cm), sun time (h). The data processing and quality control steps were as follows: (1) The AWS data were averaged over intervals of 10 min for a total of 144 records per day and missing records were denoted by -6999; (2) Data in duplicate records were rejected. (3) Unphysical data were rejected. (4) The data marked in red are problematic data. (5) The format of the date and time was unified, and the date and time were collected in the same column.

    2021-06-04 528 95

  • Cold and Arid Research Network of Lanzhou university (an observation system of Meteorological elements gradient of Xiyinghe Station, 2020)

    Cold and Arid Research Network of Lanzhou university (an observation system of Meteorological elements gradient of Xiyinghe Station, 2020)

    This dataset includes data recorded by the Cold and Arid Research Network of Lanzhou university obtained from an observation system of Meteorological elements gradient of Xiyinghe Station from January 1 to December 31, 2020. The site (101.853E, 37.561N) was located on a alpine meadow in the Menyuan, Qinghai Province. The elevation is 3639 m. The installation heights and orientations of different sensors and measured quantities were as follows: air temperature and humidity profile (2, 4, and 8 m, towards north), wind speed and direction profile (windsonic; 2, 4, and 8 m, towards north), air pressure (1.5 m), rain gauge (4 m), four-component radiometer (4 m, towards south), infrared temperature sensors (4 m, towards south, vertically downward), photosynthetically active radiation (4 m, towards south), soil heat flux (-0.05 m and -0.1m in south of tower), soil soil temperature/ moisture/ electrical conductivity profile (-0.2 and -0.4 m in south of tower), sunshine duration sensor (4 m, towards south). The observations included the following: air temperature and humidity (Ta_2 m, Ta_4 m, and Ta_8 m; RH_2 m, RH_4 m, and RH_8 m) (℃ and %, respectively), wind speed (Ws_2 m, Ws_4 m, and Ws_8 m) (m/s), wind direction (WD_2 m, WD_4 m, and WD_8 m) (°), air pressure (press) (hpa), precipitation (rain) (mm), four-component radiation (DR, incoming shortwave radiation; UR, outgoing shortwave radiation; DLR_Cor, incoming longwave radiation; ULR_Cor, outgoing longwave radiation; Rn, net radiation) (W/m^2), infrared temperature (IRT) (℃), photosynthetically active radiation (PAR) (μmol/ (s/m^2)), soil heat flux (Gs_5 cm, Gs_10cm) (W/m^2), soil temperature (Ts_20 cm, Ts_40 cm) (℃), soil moisture (Ms_20 cm, Ms_40 cm) (%, volumetric water content), soil water potential (SWP_20cm , SWP_40cm)(kpa) , soil conductivity (Ec_20cm, Ec_40cm)(μs/cm), sun time (h). The data processing and quality control steps were as follows: (1) The AWS data were averaged over intervals of 10 min for a total of 144 records per day and missing records were denoted by -6999; (2) Data in duplicate records were rejected. (3) Unphysical data were rejected. (4) The data marked in red are problematic data. (5) The format of the date and time was unified, and the date and time were collected in the same column.

    2021-06-04 593 109

  • Cold and Arid Research Network of Lanzhou university (an observation system of Meteorological elements gradient of Sidalong Station, 2020)

    Cold and Arid Research Network of Lanzhou university (an observation system of Meteorological elements gradient of Sidalong Station, 2020)

    This dataset includes data recorded by the Cold and Arid Research Network of Lanzhou university obtained from an observation system of Meteorological elements gradient of Sidalong Station from January 1 to April 12, 2020. The site (38.430°E, 99.931°N) was located on a forest in the Kangle Sunan, which is near Zhangye city, Gansu Province. The elevation is 3059 m. The installation heights and orientations of different sensors and measured quantities were as follows: air temperature and humidity profile (0.5, 3, 13, 24, and 48 m), wind speed and direction profile (windsonic; 0.5, 3, 13, 24, and 48 m), air pressure (1.5 m), rain gauge (24 m), infrared temperature sensors (4 m and 24m, vertically downward), photosynthetically active radiation (4 m and 24m), soil heat flux (-0.05 m and -0.1m), soil temperature/ moisture/ electrical conductivity profile -0.05, -0.1m, -0.2m, -0.4m and -0.6mr), four-component radiometer (24 m, towards south), sunshine duration sensor(24 m, towards south). The observations included the following: air temperature and humidity (Ta_0.5 m, Ta_3 m, Ta_13 m, Ta_24 m, and Ta_48 m; RH_0.5 m, RH_3 m, RH_13 m, RH_24 m, and RH_48 m) (℃ and %, respectively), wind speed (Ws_0.5 m, Ws_3 m, Ws_13 m, Ws_24 m, and Ws_48 m) (m/s), wind direction (WD_0.5 m, WD_3 m, WD_13 m, WD_24 m, and WD_48 m) (°), air pressure (press) (hpa), precipitation (rain) (mm), four-component radiation (DR, incoming shortwave radiation; UR, outgoing shortwave radiation; DLR_Cor, incoming longwave radiation; ULR_Cor, outgoing longwave radiation; Rn, net radiation) (W/m^2), infrared temperature (IRT_A, IRT_B) (℃), photosynthetically active radiation (PAR_A, PAR_B) (μmol/ (s m^2)), soil heat flux (Gs_0.05m, Gs_0.1m) (W/m^2), soil temperature (Ts_5 cm, Ts_10 cm, Ts_20 cm, Ts_40 cm, and Ts_60 cm) (℃), soil moisture (Ms_5 cm, Ms_10 cm, Ms_20 cm, Ms_40 cm, and Ms_60 cm) (%, volumetric water content),soil water potential (SWP_5cm, SWP_10cm, SWP_20cm, SWP_40cm, and SWP_60cm)(kpa), soil conductivity (Ec_5cm, Ec_10cm, Ec_20cm, Ec_40cm, and Ec_60cm)(μs/cm), sun time (h). The data processing and quality control steps were as follows: (1) The AWS data were averaged over intervals of 10 min for a total of 144 records per day and missing records were denoted by -6999; (2) Data in duplicate records were rejected. (3) Unphysical data were rejected. (4) The data marked in red are problematic data. (5) The format of the date and time was unified, and the date and time were collected in the same column.

    2021-06-04 553 106

  • Cold and Arid Research Network of Lanzhou university (an observation system of Meteorological elements gradient of Suganhu Station, 2020)

    Cold and Arid Research Network of Lanzhou university (an observation system of Meteorological elements gradient of Suganhu Station, 2020)

    This dataset includes data recorded by the Cold and Arid Research Network of Lanzhou university obtained from an observation system of Meteorological elements gradient of Suganhu Station from November 27 to December 31, 2020. The site (93.708° E, 40.348° N) was located on a wetland in the Suganhu west lake, Gansu Province. The elevation is 990 m. The installation heights and orientations of different sensors and measured quantities were as follows: air temperature and humidity profile (4m and 8 m, towards north), wind speed and direction profile (windsonic; 4m and 8 m, towards north), air pressure (1 m), rain gauge (4 m), infrared temperature sensors (4 m, towards south, vertically downward), soil heat flux (-0.05 and -0.1m ), soil soil temperature/ moisture/ electrical conductivity profile (below the vegetation in the south of tower, -0.05 and -0.2 m), photosynthetically active radiation (4 m, towards south), four-component radiometer (4 m, towards south), sunshine duration sensor(4 m, towards south). The observations included the following: air temperature and humidity (Ta_4 m, Ta_8 m; RH_4 m, RH_8 m) (℃ and %, respectively), wind speed (Ws_4 m, Ws_8 m) (m/s), wind direction (WD_4 m, WD_8 m) (°), air pressure (press) (hpa), precipitation (rain) (mm), four-component radiation (DR, incoming shortwave radiation; UR, outgoing shortwave radiation; DLR_Cor, incoming longwave radiation; ULR_Cor, outgoing longwave radiation; Rn, net radiation) (W/m^2), infrared temperature (IRT) (℃), photosynthetically active radiation (PAR) (μmol/ (s m-2)), soil heat flux (Gs_0.05m, Gs_0.1m) (W/m^2), soil temperature (Ts_0.1m, Ts_0.2m, Ts_0.4m) (℃), soil moisture (Ms_0.1m, Ms_0.2m, Ms_0.4m) (%, volumetric water content), soil conductivity (Ec_0.1m, Ec_0.2m, Ec_0.4m)(μs/cm), sun time(h). The data processing and quality control steps were as follows: (1) The AWS data were averaged over intervals of 10 min for a total of 144 records per day and missing records were denoted by -6999. (2) Data in duplicate records were rejected. (3) Unphysical data were rejected. (4) The data marked in red are problematic data. (5) The format of the date and time was unified, and the date and time were collected in the same column.

    2021-06-04 590 120

  • Cold and Arid Research Network of Lanzhou university (an observation system of Meteorological elements gradient of Linze Station, 2020)

    Cold and Arid Research Network of Lanzhou university (an observation system of Meteorological elements gradient of Linze Station, 2020)

    This dataset includes data recorded by the Cold and Arid Research Network of Lanzhou university obtained from an observation system of Meteorological elements gradient of Linze Station from January 1 to December 31, 2020. The site (100.060° E, 39.237° N) was located on a cropland (maize surface) in the Guzhai Xinghua, which is near Zhangye city, Gansu Province. The elevation is 1400 m. The installation heights and orientations of different sensors and measured quantities were as follows: air temperature and humidity profile (4 and 8 m, towards north), wind speed and direction profile (windsonic; 4 and 8 m, towards north), air pressure (1 m), rain gauge (4 m), four-component radiometer (4 m, towards south), infrared temperature sensors (4 m, towards south, vertically downward), photosynthetically active radiation (4 m, towards south), soil heat flux (2 duplicates below the vegetation; -0.05 and -0.1m in south of tower), soil soil temperature/ moisture/ electrical conductivity profile (-0.2 and -0.4m), sunshine duration sensor (4 m, towards south). The observations included the following: air temperature and humidity (Ta_4 m, Ta_8 m; RH_3 m, RH_4 m, RH_8 m) (℃ and %, respectively), wind speed (Ws_4 m, Ws_8 m) (m/s), wind direction (WD_4 m, WD_8 m) (°), air pressure (press) (hpa), precipitation (rain) (mm), four-component radiation (DR, incoming shortwave radiation; UR, outgoing shortwave radiation; DLR_Cor, incoming longwave radiation; ULR_Cor, outgoing long wave radiation; Rn, net radiation) (W/m^2), infrared temperature (IRT) (℃), photosynthetically active radiation (PAR) (μmol/ (s m-2)), soil heat flux (Gs_5cm, Gs_10cm) (W/m^2), soil temperature (Ts_5 cm, Ts_10 cm) (℃), soil moisture (Ms_5 cm, Ms_10 cm) (%, volumetric water content), soil water potential(SWP_5cm, SWP_10cm), soil conductivity (Ec_5cm,Ec_10cm) (μs/cm), sun time(h). The data processing and quality control steps were as follows: (1) The AWS data were averaged over intervals of 10 min for a total of 144 records per day and missing records were denoted by -6999.The precipitation and the air humidity data were rejected due to program error. (2) Data in duplicate records were rejected. (3) Unphysical data were rejected. (4) The data marked in red are problematic data. (5) The format of the date and time was unified, and the date and time were collected in the same column.

    2021-06-04 526 87

  • Qilian Mountains integrated observatory network: Dataset of Heihe integrated observatory network (Cosmic-ray observation system of soil moisture of Daman Superstation, 2020)

    Qilian Mountains integrated observatory network: Dataset of Heihe integrated observatory network (Cosmic-ray observation system of soil moisture of Daman Superstation, 2020)

    This dataset includes data recorded by the Heihe integrated observatory network obtained from a Cosmic-ray Soil Moisture Observing System of soil moisture of Daman Superstation from January 1 to December 31, 2020. The site (100.372° E, 38.856° N) was located on a cropland (maize surface) in the Daman irrigation, which is near Zhangye city, Gansu Province. The elevation is 1556 m. The bottom of the probe was 0.5 m above the ground; the sampling interval was 1 hour. The raw COSMOS data include the following: battery (Batt, V), temperature (T, C), relative humidity (RH, %), air pressure (P, hPa), fast neutron counts (N1C, counts per hour), thermal neutron counts (N2C, counts per hour), sample time of fast neutrons (N1ET, s), and sample time of thermal neutrons (N2ET, s). The distributed data include the following variables: Date, Time, P, N1C, N1C_cor (corrected fast neutron counts) and VWC (volume soil moisture, %), which were processed as follows: 1) Data were removed and replaced by -6999 when (a) the battery voltage was less than 11.8 V, (b) the relative humidity was greater than 80% inside the probe box, (c) the counting data were not of one-hour duration and (d) neutron count differed from the previous value by more than 20%; 2) An air pressure correction was applied to the quality-controlled raw data according to the equation contained in the equipment manual; 3) After the quality control and corrections were applied, soil moisture was calculated using the equation in Zreda et al. (2012), where N0 is the neutron counts above dry soil and the other variables are fitted constants that define the shape of the calibration function. Here, the parameter N0 was calibrated using the in situ observed soil moisture by SoilNET within the footprint; 4) Based on the calibrated N0 and corrected N1C, the hourly soil moisture was computed using the equation from the equipment manual. Moreover, suspicious data were marked in red. For more information, please refer to Liu et al. (2018) (for sites information), Zhu et al. (2015) for data processing) in the Citation section.

    2021-06-02 604 18

  • Qilian Mountains integrated observatory network: Dataset of Heihe integrated observatory network (Large aperture scintillometer of Sidaoqiao Superstation, 2020)

    Qilian Mountains integrated observatory network: Dataset of Heihe integrated observatory network (Large aperture scintillometer of Sidaoqiao Superstation, 2020)

    This dataset contains the flux measurements from the large aperture scintillometer (LAS) at Sidaoqiao Superstation in the Heihe integrated observatory network from January 1 to December 31 in 2020. There were BLS900, BLS450 and RR-RSS460 at Sidaoqiao Superstation. The north towers were set up with these instruments’ receivers and the south towers were transmitters. The site (north: 101.137° E, 42.008° N; south: 101.131° E, 41.987 N) was located in Ejinaqi, Inner Mongolia. The underlying surfaces between the two towers were tamarisk, populus, bare land and farmland. The elevation is 873 m. The effective height of the LAS was 25.5 m, and the path length was 2350 m. The data were sampled 1 minute. The raw data acquired at 1 min intervals were processed and quality controlled. The data were subsequently averaged over 30 min periods, in which sensible heat flux was iteratively calculated by combining Cn2 with meteorological data according to the Monin-Obukhov similarity theory. The main quality control steps were as follows: (1) The data were rejected when Cn2 exceeded the saturated criterion (BLS900&BLS450:Cn2>7.25E-14,RR-RSS460:Cn2>7.84 E-14). (2) The data were rejected when the demodulation signal was small (BLS900&BLS450:Average X Intensity<1000;RR-RSS460:Demod>-20mv). (3) The data were rejected when collected during precipitation. (4) The data were rejected if collected at night when weak turbulence occurred (u* was less than 0.1 m/s). In the iteration process, the universal functions of Thiermann and Grassl (1992) and Andreas (1988) were selected for BLS900 and RR-RSS460, respectively. Detailed can refer to Liu et al. (2011, 2013). Due to instrument adjustment and inadequate power supply, the date of missing data for the large aperture scintillator is: 2020.02.13-2020.02.14;2020.05.18-2020.15.19。 Several instructions were included with the released data. (1) The las data are firstly from BLS900, followed by BLS450, and finally the final missing data was marked with-6999. (2) The dataset contained the following variables: Date/time (yyyy/m/d h:mm), the structural parameter of the air refractive index (Cn2, m-2/3), and the sensible heat flux (H, W/m^2). In this dataset, a time of 0:30 corresponds to the average data for the period between 0:00 and 0:30, and the data were stored in *.xlsx format. For more information, please refer to Liu et al. (2018) (for sites information), Liu et al. (2011) (for data processing) in the Citation section.

    2021-06-02 630 12