Pan-third-polar environmental change and green silk road construction

Brief Introduction: Pan-third-polar environmental change and green silk road construction

Number of Datasets: 660

  • Glacier inventory dataset of Nepal (2000)

    Glacier inventory dataset of Nepal (2000)

    This glacier inventory is supported by the International Centre for Integrated Mountain Development (ICIMOD) and the United Nation Environment Programme/Regional Resources Centre, Asia and The Pacific (UNEP/RRC-AP)。 1、The glacier inventory uses the remote sensing data of Landsat,reflecting the current status of glaciers in Nepal in 2000. 2、The spatial coverage of the glacier inventory: Nepal 3、Contents of the glacier inventory: glacier location, glacier code, glacier name, glacier area, glacier length, glacier thickness, glacier stocks, glacier type, glacier orientation, etc. 4、Data Projection: Grid Zone IIA Projection: Lambert conformal conic Ellipsoid: Everest (India 1956) Datum: India (India, Nepal) False easting: 2743196.40 False northing: 914398.80 Central meridian: 90°00'00"E Central parallel: 26°00'00"N Scale factor: 0.998786 Standard parallel 1: 23°09'28.17"N Standard parallel 2: 28°49'8.18"N Minimum X Value: 1920240 Maximum X Value: 2651760 Minimum Y Value: 914398 Maximum Y Value: 1188720 Grid Zone IIB Projection: Lambert conformal conic Ellipsoid: Everest (India 1956) Datum: India (India, Nepal) False easting: 2743196.40 False northing: 914398.80 Central meridian: 90°00'00"E Central parallel: 26°00'00"N Scale factor: 0.998786 Standard parallel 1: 21°30'00"N Standard parallel 2: 30°00'00"N Minimum X Value: 1823188 Maximum X Value: 2000644 Minimum Y Value: 1306643 Maximum Y Value: 1433476 For a detailed data description, please refer to the data file and report.

    2020-06-09 7464 28 View Details

  • Glacial lake inventory of the Pumqu Basin in the Himalayan Region of China (2004)

    Glacial lake inventory of the Pumqu Basin in the Himalayan Region of China (2004)

    This glacial lake inventory receives joint support from the International Centre for Integrated Mountain Development (ICIMOD) and the United Nations Environment Programme/Regional Resources Centre for Asia and the Pacific (UNEP/RRC-AP), Cold and Arid Region Environmental and Engineering Research Institute (CAREERI). 9. This glacial lake cataloging uses Landsat (TM and ETM), Aster and other remote sensing data. It reflects the current situation of glacial lakes with areas larger than 0.01 km2 in the Himalayas in 2004. 10. Glacial lake catalogue coverage: the Himalayan region, Pumqu (Arun), Rongxer (Tama Koshi), Poiqu (Bhote-Sun Koshi), Jilongcangbu (Trishuli), Zangbuqin (Budhigandaki), Majiacangbu (Humla Karnali) and others. 11. Glacial Lake cataloging includes glacial lake cataloging, glacial lake type, glacial lake orientation, glacial lake width, glacial lake area, glacial lake depth, glacial lake length and other attributes. 12. Data projection information: Projection: Transverse_Mercator False_Easting: 500000.000000 False_Northing: 0.000000 Central_Meridian: 87.000000 Scale_Factor: 0.999600 Latitude_Of_Origin: 0.000000 Linear Unit: Meter (1.000000) Geographic Coordinate System: GCS_WGS_1984 Angular Unit: Degree (0.017453292519943299) Prime Meridian: Greenwich (0.000000000000000000) Datum: D_WGS_1984 Spheroid: WGS_1984 Semimajor Axis: 6378137.000000000000000000 Semiminor Axis: 6356752.314245179300000000 Inverse Flattening: 298.257223563000030000 For a detailed data description, please refer to the data file and report.

    2020-06-09 7125 29 View Details

  • Inventory of glacial lakes in Bhutan (2000)

    Inventory of glacial lakes in Bhutan (2000)

    This glacial lake inventory is supported by the International Centre for Integrated Mountain Development (ICIMOD) and the United Nations Environment Programme/Regional Resource Centre, Asia and The Pacific (UNEP/RRC-AP). 1. The glacial lake inventory incorporates topographic map data and reflects the status of glacial lakes in the region in 2000. 2. The spatial coverage of the glacial lake inventory is as follows: Pa Chu Sub-basin, Mo Chu Sub-basin, Thim Chu Sub-basin, Pho Chu Sub-basin, Mangde Chu Sub-basin, Chamkhar Chu Sub-basin, Kuri Chu Sub-basin, Dangme Chu Sub-basin, Northern Basin, etc. 3. The glacial lake inventory includes the following data fields: glacial lake code, glacial lake types, glacial lake orientation, glacial lake width, glacial lake area, glacial lake depth, glacial lake length, etc. 4. Data projection: Projection: Polyconic Ellipsoid: Everest (India 1956) Datum: Indian (India, Nepal) False easting: 2,743,196.4 False northing: 914,398.80 Central meridian: 90°0'00'' E Central parallel: 26°0'00'' N Scale factor: 0.998786 For a detailed description of the data, please refer to the data file and report.

    2020-06-09 7837 6 View Details

  • Passive microwave SSM/I brightness temperature dataset for China (1987-2007)

    Passive microwave SSM/I brightness temperature dataset for China (1987-2007)

    This data set includes the microwave brightness temperatures obtained by the spaceborne microwave radiometer SSM/I carried by the US Defense Meteorological Satellite Program (DMSP) satellite. It contains the twice daily (ascending and descending) brightness temperatures of seven channels, which are 19H, 19V, 22V, 37H, 37V, 85H, and 85V. The Specialized Microwave Imager (SSM/I) was developed by the Hughes Corporation of the United States. In 1987, it was first carried into the space on the Block 5D-/F8 satellite of the US Defense Meteorological Satellite Program (DMSP) to perform a detection mission. In the 10 years from when the DMSP soared to orbit in 1987 to when the TRMM soared to orbit in 1997, the SSM/I was the world's most advanced spaceborne passive microwave remote sensing detection instrument, having the highest spatial resolution in the world. The DMSP satellite is in a near-polar circular solar synchronous orbit; the elevation is approximately 833 km, the inclination is 98.8 degrees, and the orbital period is 102.2 minutes. It passes through the equator at approximately 6:00 local time and covers the whole world once every 24 hours. The SSM/I consists of seven channels set at four frequencies, and the center frequencies are 19.35, 22.24, 37.05, and 85.50 GHz. The instrument actually comprises seven independent, total-power, balanced-mixing, superheterodyne passive microwave radiometer systems, and it can simultaneously measure microwave radiation from Earth and the atmospheric systems. Except for the 22.24 GHz frequency, all the frequencies have both horizontal and vertical polarization states. Some Eigenvalues of SSM/I Channel Frequency (GHz) Polarization Mode (V/H) Spatial Resolution (km * km) Footprint Size (km) 19V 19.35 V 25×25 56 19H 19.35 H 25×25 56 22V 22.24 V 25×25 45 37V 37.05 V 25×25 33 37H 37.05 H 25×25 33 85V 85.50 V 12.5×12.5 14 85H 85.50 H 12.5×12.5 14 1. File Format and Naming: Each group of data consists of remote sensing data files, .JPG image files and .met auxiliary information files as well as .TIM time information files and the corresponding .met time information auxiliary files. The data file names and naming rules for each group in the SSMI_Grid_China directory are as follows: China-EASE-Fnn-ML/HaaaabbbA/D.ccH/V (remote sensing data); China-EASE-Fnn -ML/HaaaabbbA/D.ccH/V.jpg (image file); China-EASE-Fnn-ML/HaaaabbbA/D.ccH/V.met (auxiliary information document); China-EASE-Fnn-ML/HaaaabbbA/D.TIM (time information file); and China-EASE- Fnn -ML/HaaaabbbA/D.TIM.met (time information auxiliary file). Among them, EASE stands for EASE-Grid projection mode; Fnn represents carrier satellite number (F08, F11, and F13); ML/H represents multichannel low resolution and multichannel high resolution; A/D stands for ascending (A) and descending (D); aaaa represents the year; bbb represents the Julian day of the year; cc represents the channel number (19H, 19V, 22V, 37H, 37V, 85H, and 85V); and H/V represents horizontal polarization (H) and vertical polarization (V). 2. Coordinate System and Projection: The projection method is an equal-area secant cylindrical projection, and the double standard latitude is 30 degrees north and south. For more information on EASE-GRID, please refer to http://www.ncgia.ucsb.edu/globalgrids-book/ease_grid/. If you need to convert the EASE-Grid projection method into a geographic projection method, please refer to the ease2geo.prj file, which reads as follows. Input Projection cylindrical Units meters Parameters 6371228 6371228 1 /* Enter projection type (1, 2, or 3) 0 00 00 /* Longitude of central meridian 30 00 00 /* Latitude of standard parallel Output Projection GEOGRAPHIC Spheroid KRASovsky Units dd Parameters End 3. Data Format: Stored as binary integers, each datum occupies 2 bytes. The data that are actually stored in this data set are the brightness temperatures *10, and after reading the data, they need to be divided by 10 to obtain true brightness temperature. 4. Data Resolution: Spatial resolution: 25 km, 12.5 km (SSM/I 85 GHz); Time resolution: day by day, from 1978 to 2007. 5. The Spatial Coverage: Longitude: 60°-140° east longitude; Latitude: 15°-55° north latitude. 6. Data Reading: Each group of data includes remote sensing image data files, .JPG image files and .met auxiliary information files. The JPG files can be opened with Windows image and fax viewers. The .met auxiliary information files can be opened with notepad, and the remote sensing image data files can be opened in ENVI and ERDAS software.

    2020-06-09 12638 54 View Details

  • Permafrost map along at the 1:600 000 in the Tibet Highway (1983)

    Permafrost map along at the 1:600 000 in the Tibet Highway (1983)

    The data are a digitized permafrost map along the Qinghai-Tibet Highway (1:600,000) (Boliang Tong, et al. 1983), which was compiled by Boliang Tong, shude Li, Jueying bu, and Guoqing Qiu from the Cold and Arid Regions Environmental and Engineering Research Institute of the Chinese Academy of Sciences (originally called the Lanzhou Institute of Glaciology and Cryopedology, Chinese Academy of Sciences) in 1981. The map aims to reflect the basic laws of permafrost distribution along the highway and its relationship with the main natural environmental factors. The basic data for the compilation of the map include hydrogeological and engineering geological survey results and maps along the Qinghai-Tibet Highway(1:200000) (First Hydrogeological Engineering Geological Brigade of Qinghai Province, Institute of Geomechanics of the Academy of Geological Science), the cryopedological research results of the Institute of Glaciology and Cryopedology of Chinese Academy of Sciences since 1960 in nine locations along the Qinghai-Tibet Highway (West Datan, Kunlun pass basin, Qingshuihe, Fenghuohe, Tuotuohe, the Sangma Basin, Buquhe, Tumengela, and Liangdaohe) and drilling data of the Golmud-Lhasa oil pipeline and aerial topographic data of the work area. Taking the 1:200000 topographic map as the working base map, a permafrost map was compiled, which was then downscaled to a 1:600000 map to ensure the accuracy of the map. To make up for the lack of data in a larger area along the line, the characteristics and principles of the frozen soils found in the nine frozen soil research points along the highway were applied to areas with the same geologic and geographical conditions; meanwhile, aerial photographs were used as supplements to the freeze-thaw geology and frozen soil characteristics. The permafrost map along the Qinghai-Tibet Highway (1:600,000) includes the annual average temperature contour map along the Qinghai-Tibet Highway (1:7,200,000) and the permafrost map along the Qinghai-Tibet Highway (1:600,000). The permafrost map along the Qinghai-Tibet Highway also contains information on permafrost types, lithology, frozen soil phenomena, types of through-melting zones, classification of frozen soil engineering, and geological structural fractures. These data contain only digitized permafrost information. The spatial coverage is from Daxitan on the Qinghai-Tibet Highway in the north to Sangxiong in the south and is nearly 800 kilometers long and 40-50 kilometers wide. The data set includes a vectorized and a scanned map of the permafrost map along the Qinghai-Tibet Highway. The attribute information of the map is as follows. A-1; Continuous permafrost; >0°C; remained as a frozen soil layer and isolation layer A-2; Continuous permafrost; 0~-0.5°C; 0-25 m A-3; Continuous permafrost; -0.5~-1.5°C; 25-60 m A-4; Continuous permafrost; -1.5~-3.5°C; 60-120 m A-5;Continuous permafrost;<-3.5°C;>120 m B-1; Island permafrost ground; Seasonal Frozen Ground; B-2; Continuous permafrost; >0°C; remained as a frozen soil layer and isolation layer B-3; Island permafrost extent; 0~-0.5°C; 0-25 m B-4; Island permafrost extent; -0.5~-1.5°C; 25-60 m B-5; Island permafrost extent; -1.5~-3.5°C; 60-120 m

    2020-06-09 10687 93 View Details

  • Inventory of glacial lakes in Nepal (2000)

    Inventory of glacial lakes in Nepal (2000)

    This glacial lake inventory is supported by the International Centre for Integrated Mountain Development (ICIMOD) and the United Nation Environment Programme/Regional Resources Centre, Asia and The Pacific (UNEP/RRC-AP). 1. The glacial lake inventory uses the remote sensing data of Landsat,reflecting the current status of glacial lakes larger than 0.01 square kilometers in Nepal in 2000. 2. The spatial coverage of the glacial lake inventory: Nepal 3. Contents of the glacial lake inventory: glacial lake code, glacial lake types, glacial lake area, distance between glacial lakes and the glaciers, related glaciers, etc. 4. Data Projection: Grid Zone IIA Projection: Lambert conformal conic Ellipsoid: Everest (India 1956) Datum: India (India, Nepal) False easting: 2743196.40 False northing: 914398.80 Central meridian: 90°00'00"E Central parallel: 26°00'00"N Scale factor: 0.998786 Standard parallel 1: 23°09'28.17"N Standard parallel 2: 28°49'8.18"N Minimum X Value: 1920240 Maximum X Value: 2651760 Minimum Y Value: 914398 Maximum Y Value: 1188720 Grid Zone IIB Projection: Lambert conformal conic Ellipsoid: Everest (India 1956) Datum: India (India, Nepal) False easting: 2743196.40 False northing: 914398.80 Central meridian: 90°00'00"E Central parallel: 26°00'00"N Scale factor: 0.998786 Standard parallel 1: 21°30'00"N Standard parallel 2: 30°00'00"N Minimum X Value: 1823188 Maximum X Value: 2000644 Minimum Y Value: 1306643 Maximum Y Value: 1433476 For a detailed data description, please refer to the data file and report.

    2020-06-09 6992 7 View Details

  • Fertilizer consumption of countries along the Belt and Road(2002-2016)

    Fertilizer consumption of countries along the Belt and Road(2002-2016)

    The data set recorded one belt, one road, 2002-2016 years' fertilizer and pesticide consumption data in 65 countries. Fertilizer and pesticide consumption refers to the amount of plant nutrients and pesticides consumed per unit of cultivated land. Fertilizer products include nitrogen, potassium and phosphate (including phosphate rock powder), and traditional nutrients animal and plant fertilizers are not included. Data source: Food and Agriculture Organization, electronic files and web site. Fertilizer and pesticide are the main sources of agricultural chemical pollution, which pose a serious threat to the agricultural ecological environment and the sustainable development of agricultural economy. The data set reflects one belt, one road, along the line of fertilizer and pesticide use, and can provide data support for the research on agricultural ecological environment and other related research. The data set contains two data tables: fertilizer consumption (kg / ha of cultivated land) and pesticide consumption (kg / ha of cultivated land).

    2020-06-05 309 0 View Details

  • The frozen soil type map of Kazakhstan (1:10,000,000) (2000)

    The frozen soil type map of Kazakhstan (1:10,000,000) (2000)

    The frozen soil type map of Kazakhstan (1:10,000,000) includes three .shp vector layers: 1, Polyline ranges.shp, indicating the extent of frozen soil; 2, Polygon kaz_perm.shp, frozen soil; 3, An attribute description Word file. The kaz_perm attribute table includes four fields: ID, REGION, SUBREGION, M_RANGE. Comparison of the main attributes: First, Area I. Altai-TienShan Second, Region: High mountains I.1. Altai, I.2. Saur-Tarbagatai, I.3.Dzhungarskyi, I.4. Northern Tien Shan, I.5. Western Tien Shan Intermountain depressions I.6. Zaysanskyi, I.7. Alakulskyi, I.8. Iliyskyi II. Western Siberian Second, Region: Planes II.1. Northern Kazakhstanskyi V. Western Kazakhstanskaya III. Kazakh small hills area IV. Turanskaya: IV.1. Turgayskyi IV.2. Near Aaralskyi IV.3. Chuysko-Syrdaryinskyi IV.4. South-Balkhashskyi V. Western Kazakhstanskaya: V.1. Mugodzhar-Uralskyi V.2. Near Caspian V.3. manghyshlak-Ustyrtskyi Third, Sub-region: I.1.1. Western Altai I.1.2. South Altai I.1.3. Kalbinskyi I.2.1. Tarbagatayskyi I.2.2. Saurskyi I.3.1. Nortern Dzhungarskyi I.3.2. Western Dzhungarskyi I.3.3. Southern Dzhungarskyi I.4.1. Kirgizskyi Alatau I.4.2. Zailiyskyi-Kungeyskyi I.4.3. Ketmenskyi I.4.4. Bayankolskyi I.5.1. Karatauskyi I.5.2. Talaso-Ugamskyi The layer projection information is as follows: GEOGCS["GCS_WGS_1984", DATUM["WGS_1984", SPHEROID["WGS_1984", 6378137.0, 298.257223563]], PRIMEM["Greenwich", 0.0], UNIT["Degree",0.0174532925199433]] Different regions feature different frozen soil attributes, and the specific attribute information can be found in the Word file.

    2020-06-04 7630 4 View Details

  • Glacier inventory dataset of Bhutan (2000)

    Glacier inventory dataset of Bhutan (2000)

    This glacier inventory is supported by the International Centre for Integrated Mountain Development (ICIMOD) and the United Nations Environment Programme/Regional Resource Centre, Asia and The Pacific (UNEP/RRC-AP). 1.The glacier inventory incorporates topographic map data, and reflects the status of glaciers in the region in 2000. 2.The spatial coverage of the glacier inventory includes the following: Pa Chu Sub-basin,Mo Chu Sub-basin,Thim Chu Sub-basin,Pho Chu Sub-basin,Mangde Chu Sub-basin, Chamkhar Chu Sub-basin,Kuri Chu Sub-basin,Dangme Chu Sub-basin,Northern Basin, etc. 3.The glacier inventory includes the following data fields: glacier location, glacier code, glacier name, glacier area, glacier length, glacier thickness, glacier stocks, glacier type, glacier orientation, etc. 4.Data projection: Projection: Polyconic Ellipsoid: Everest (India 1956) Datum: Indian (India, Nepal) False easting: 2,743,196.4 False northing: 914,398.80 Central meridian: 90°0'00'' E Central parallel: 26°0'00' N Scale factor: 0.998786 For a detailed description of the data, please refer to the data file and report.

    2020-06-04 8949 4 View Details

  • Map of the frozen soil distribution in the Republic of Mongolia (1990)

    Map of the frozen soil distribution in the Republic of Mongolia (1990)

    A map of the frozen soil distribution in the Republic of Mongolia is digitized from the National Atlas of the Republic of Mongolia (Sodnom and Yanshin, 1990). This data set describes the distribution and general properties of permafrost, seasonally frozen soil, and low-temperature phenomena in the Republic of Mongolia. Two plates were specifically digitized. The first plate, with a scale of 1:12,000,000, describes four general frozen soil regions: (1) continuous and discontinuous permafrost; (2) island-like and sparse island-like permafrost; (3) sporadic permafrost; and (4) seasonally frozen soil. The second plate, with a scale of 1:4,500,000, describes 14 different terrain types. The terrain types are divided based on elevation, annual average temperature, permafrost thickness, melting depth, and freezing depth of seasonally frozen soil. The locations of the six types of low-temperature phenomena in Mongolia are also included: pingos, ice cones, hot karst, detachment failures, solifluction, and cryoplatation processes. The data are provided in the ESRI shape file format and can be downloaded from the US Ice and Snow Data Center.

    2020-06-04 9238 21 View Details

  • Distribution map of frozen soil and subsurface ice in Russia (1:20,000,000) (1997)

    Distribution map of frozen soil and subsurface ice in Russia (1:20,000,000) (1997)

    This dataset is the spatial distribution map of the marshes in the source area of the Yellow River near the Zaling Lake-Eling Lake, covering an area of about 21,000 square kilometers. The data set is classified by the Landsat 8 image through an expert decision tree and corrected by manual visual interpretation. The spatial resolution of the image is 30m, using the WGS 1984 UTM projected coordinate system, and the data format is grid format. The image is divided into five types of land, the land type 1 is “water body”, the land type 2 is “high-cover vegetation”, the land type 3 is “naked land”, and the land type 4 is “low-cover vegetation”, and the land type 5 is For "marsh", low-coverage vegetation and high-coverage vegetation are distinguished by vegetation coverage. The threshold is 0.1 to 0.4 for low-cover vegetation and 0.4 to 1 for high-cover vegetation.

    2020-06-04 11804 18 View Details

  • Inventory dataset of glacial lakes in Himachal Pradesh, India (2004)

    Inventory dataset of glacial lakes in Himachal Pradesh, India (2004)

    This glacial lake inventory receives joint support from the International Centre for Integrated Mountain Development (ICIMOD) and United Nations Environment Programme/Regional Resource Centre, Asia and the Pacific (UNEP/RRC-AP). 5. This glacial lake inventory referred to Landsat 4/5 (MSS and TM), SPOT(XS), IRS-1C/1D(LISS-III) and other remote sensing data. It reflects the current situation of glacial lakes with areas larger than 0.01 km2 in 2004. 6. Glacial Lake Inventory Coverage: Yamuna basin, Ravi basin, Chenab basin, Satluj River Basin and others. 7. The Glacial Lake Inventory includes glacial lake inventory, glacial lake type, glacial lake width, glacial lake orientation, glacial lake length from the glacier and other attributes. 8. Projection parameter: Projection: Albers Equal Area Conic Ellipsoid: WGS 84 Datum: WGS 1984 False easting: 0.0000000 False northing: 0.0000000 Central meridian: 82° 30’E Central parallel: 0° 0’ N Latitude of first parallel: 20° N Latitude of second parallel: 35° N For a detailed data description, please refer to the data file and report.

    2020-06-04 5710 6 View Details

  • NCEP/NCAR reanalysis 1.0 (1948-2017)

    NCEP/NCAR reanalysis 1.0 (1948-2017)

    NCEP/NCAR Reanalysis 1 is an assimilation of data from the past (1948-recent). It was developed by the National Centers for Environmental Prediction-National Center for Atmospheric Research (NCEP–NCAR) in the US to act as an advanced analysis and prediction system. Most of the data are from the original daily average data of the PSD (Physical Sciences Division). However, the data from 1948 to 1957 are slightly different because these data are conventional (non-Gaussian) grid data. The information published on the official website is generally from 1948 to the present, and the latest information is generally updated every two days. For data on an isostatic surface, the general vertical resolution is 17 layers, from 1000 hPa to 10 hPa. The horizontal resolution is typically 2.5° x 2.5°. The NCEP reanalysis data are systematically comparable among international atmospheric science reanalysis data sets. Compared with the reanalysis data of the European Center, the initial year is earlier, and the latest data updates are more frequent. These two sets of reanalysis data are currently the most widely used data sets in the world. For details of the data, please visit the following website: https://www.esrl.noaa.gov/psd/data/gridded/data.ncep.reanalysis.html

    2020-06-03 1219 12 View Details

  • The Randolph Glacier Inventory (RGI) (2012-2017)

    The Randolph Glacier Inventory (RGI) (2012-2017)

    The Randolph Glacier Inventory (RGI) is a complete inventory of global glacier outlines published by GLIMS (Global Land Ice Measurements from Space). It is currently available in six versions: Version 1.0 was published in February 2012, version 2.0 was published in June 2012, version 3.0 was published in April 2013, version 4.0 was published in December 2014, version 5.0 was published in July 2015, and version 6.0 was published in July 2017. The data sets include four versions, which are 6.0, 5.0, 4.0 and 3.2 (revision, August 2013). The data are organized according to different regions. In each region, each glacier record includes a shape file (.shp file and its corresponding .dbf, .prj, and .shx files) and a .csv file of height measurement data. The data are from GLIMS: Global Land Ice Measurements from Space (http://www.glims.org/RGI/) Data quality checks include geometry, topology, and certain attributes, and the following checks were performed: 1) All polygons were checked by the ArcGIS Repair Geometry tool. 2) Glaciers with areas less than 0.01 square kilometres were removed. 3) The topology was checked with the Does Not Overlap rule. 4) The attribute sheet was checked by Fortran subroutines and Python scripts for data quality.

    2020-06-03 1536 18 View Details

  • Oxygen Isotope, dust, anion and accumulation data from the Dunde Ice Core (1987)

    Oxygen Isotope, dust, anion and accumulation data from the Dunde Ice Core (1987)

    This data set contains data from the three ice cores drilled from the Dunde ice cap in the northern Tibetan Plateau in 1987. Core D-1 has a length of 139.8 m and is divided into 3585 samples for isotope analysis. Core D-3 has a length of 138.4 m, and the upper 56 m was cut into several samples on site and stored in bottles after melting, while the remaining length was frozen and preserved. The data set contains three data tables, namely, 10-year mean oxygen isotope data for the Dunde ice core (520-1987 A.D.), 5-year mean water equivalent accumulation data for Dunde ice core and 10-year mean dust data for the Dunde ice core. Data source: National Centers for Environmental Information (http://www.ncdc.noaa.gov/data-access/paleoclimatology-data/datasets/ice-core). Processing method: Average. Table 1: 10-year mean oxygen isotope data for core D-3 (520 - 1987 A.D.) a. Name explanation Field 1: Start time Field 2: End time Field 3: Oxygen isotope value b. Dimensions (units of measure) Field 1: Dimensionless Field 2: Dimensionless Field 3: ‰ Data Table 2: 5-year mean water equivalent accumulation data for core D-1 (1606-1984) a. Name explanation Field 1: Start time Field 2: End time Field 3: Accumulation b. Dimensions (units of measure) Field 1: Dimensionless Field 2: Dimensionless Field 3: m Data Sheet 3: 10-year mean dust data for core D-3 (520 - 1987 A.D.) a. Name explanation Field 1: Start time Field 2: End time Field 3: Dust (diameter 0.63-16 µm) Field 4: Dust (diameter 2.00-60 µm) Field 5: Cl- Field 6: SO42- Field 7: NO3- b. Dimensions (units of measure) Field 1: Dimensionless Field 2: Dimensionless Field 3: Particles/mL Field 4: Particles/mL Field 5: ppb Field 6: ppb Field 7: ppb

    2020-06-03 808 6 View Details

  • The 7000 years of isotope and geochemical data of the Puruogangri Ice Sheet (2000)

    The 7000 years of isotope and geochemical data of the Puruogangri Ice Sheet (2000)

    This data set comprises the oxygen isotope and geochemical data of two deep-drilled ice cores drilled in the Puruogangri ice sheet (33°55'N, 89°05'E, altitude: 6070 meters) in the central Tibetan Plateau in 2000. The ice core depths are 118.4 and 214.7 meters, respectively. Source of the data: National Centers for Environmental Information (http://www.ncdc.noaa.gov/data-access/paleoclimatology-data/datasets/ice-core) . The data set contains 6 tables, which are the average values of 1 oxygen isotope per meter of the Puruogangri ice core, the 10-year average data of 1 oxygen isotope of the Puruogangri ice core, the average values of 2 oxygen isotope and the soluble aerosol concentrations per meter of the Puruogangri ice core, the 5-year average data of 2 oxygen isotope and aerosol concentrations of Puruogangri ice core, 10-year average data of 2 oxygen isotope and aerosol concentrations of the Puruogangri ice core, and the 100-year average values of 2 oxygen isotopic and aerosol concentrations of the Puruogangri ice core. The information on the fields is as follows: Table 1: the average values of 1 oxygen isotope per meter of the Puruogangri ice core Field: Field Name [Dimensions (Unit of Measure)] Field 1: Depth [m] Field 2: δ18° [‰] Table 2: the 10-year average data of 1 oxygen isotope of the Puruogangri ice core Field: Field Name [Dimensions (Unit of Measure)] Field 1: Start time [Dimensionless] Field 2: End time [Dimensionless] Field 3: δ18° [‰] Table 3: the average values of 2 oxygen isotope and soluble aerosol concentration per meter of the Puruogangri ice core Field: Field Name [Dimensions (Unit of Measure)] Field 1: Depth [m] Field 2: Dust (diameter 0.63-20 um) [particles/mL] Field 3: 18° [‰] Field 4: F- [ppb] Field 5: Cl- [ppb] Field 6: SO42- [ppb] Field 7: NO3- [ppb] Field 8: Na+ [ppb] Field 9: NH4+ [ppb] Field 10: K+ [ppb] Field 11: Mg2+ [ppb] Field 12: Ca2+ [ppb] Table 4: the 5-year average data of 2 oxygen isotope and aerosol concentration of the Puruogangri ice core Field: Field Name [Dimensions (Unit of Measure)] Field 1: Start time [Dimensionless] Field 2: End time [Dimensionless] Field 3: δ18° [‰] Field 4: Accumulation [cm/yr] Field 5: Dust (diameter 0.63-20 um) [particles/mL] Field 6: F- [ppb] Field 7: Cl- [ppb] Field 8: SO42- [ppb] Field 9: NO3- [ppb] Field 10: Na+ [ppb] Field 11: NH4+ [ppb] Field 12: K+ [ppb] Field 13: Mg2+ [ppb] Field 14: Ca2+ [ppb] Table 5: the 10-year average data of 2 oxygen isotope and aerosol concentrations of the Puruogangri ice core Field: Field Name [Dimensions (Unit of Measure)] Field 1: Start time [Dimensionless] Field 2: End time [Dimensionless] Field 3: δ18° [‰] Field 4: Dust (diameter 0.63-20 um) [particles/mL] Field 5: F- [ppb] Field 6: Cl- [ppb] Field 7: SO42- [ppb] Field 8: NO3- [ppb] Field 9: Na+ [ppb] Field 10: NH4+ [ppb] Field 11: K+ [ppb] Field 12: Mg2+ [ppb] Field 13: Ca2+ [ppb] Table 6: the 100-year average values of 2 oxygen isotopic and aerosol concentrations of the Puruogangri ice core Field: Field Name [Dimensions (Unit of Measure)] Field 1: The last year of the interval [Dimensionless] Field 2: δ18° [‰] Field 3: Dust (diameter 0.63-20 um) [particles/mL] Field 4: F- [ppb] Field 5: Cl- [ppb] Field 6: SO42- [ppb] Field 7: NO3- [ppb] Field 8: Na+ [ppb] Field 9: NH4+ [ppb] Field 10: K+ [ppb] Field 11: Mg2+ [ppb] Field 12: Ca2+ [ppb]

    2020-06-03 893 5 View Details

  • The 30-m land cover data of Tibetan Plateau (2010)

    The 30-m land cover data of Tibetan Plateau (2010)

    These data contain two data files: GLOBELAND30 TILES (raw data) and TIBET_ GLOBELAND30_MOSAIC (mosaic data). The raw data were downloaded from the Global Land Cover Data website (GlobalLand3) (http://www.globallandcover.com) and cover the Tibetan Plateau and surrounding areas. The raw data were stored in frames, and for the convenience of using the data, we use Erdas software to splice and mosaic the raw data. The Global Land Cover Data (GlobalLand30) is the result of the “Global Land Cover Remote Sensing Mapping and Key Technology Research”, which is a key project of the National 863 Program. Using the American Landsat images (TM5, ETM+) and Chinese Environmental Disaster Reduction Satellite images (HJ-1), the data were extracted by a comprehensive method based on pixel classification-object extraction-knowledge checks. The data include 10 primary land cover types—cultivated land, forest, grassland, shrub, wetland, water body, tundra, man-made cover, bare land, glacier and permanent snow—without extracting secondary types. In terms of accuracy assessment, nine types and more than 150,000 test samples were evaluated. The overall accuracy of the GlobeLand30-2010 data is 80.33%. The Kappa indicator is 0.75. The GlobeLand30 data use the WGS84 coordinate system, UTM projection, and 6-degree banding, and the reference ellipsoid is the WGS 84 ellipsoid. According to different latitudes, the data are organized into two types of framing. In the regions of 60° north and south latitudes, the framing is carried out according to a size of 5° (latitude) × 6° (longitude); in the regions of 60° to 80° north and south latitudes, the framing is carried out according to a size of 5° (latitude) × 12° (longitude). The framing is projected according to the central meridian of the odd 6° band. GLOBELAND30 TILES: The original, unprocessed raw data are retained. TIBET_ GLOBELAND30_MOSAIC: The Erdas software is used to mosaic the raw data. The parameter settings use the default value of the raw data to retain the original, and the accuracy is consistent with that of the downloading site.

    2020-06-03 1349 62 View Details

  • The ASTER_GDEM dataset of the Tibetan Plateau (2011)

    The ASTER_GDEM dataset of the Tibetan Plateau (2011)

    The ASTER Global Digital Elevation Model (ASTER GDEM) is a global digital elevation data product jointly released by the National Aeronautics and Space Administration of America (NASA) and the Ministry of Economy, Trade and Industry of Japan (METI). The DEM data were based on the observation results of NASA’s new generation of Earth observation satellite, TERRA, and generated from 1.3 million stereo image pairs collected by ASTER (Advanced Space borne Thermal Emission and Reflection Radio meter) sensors, covering more than 99% of the land surface of the Earth. These data were downloaded from the ASTER GDEM data distribution website. For the convenience of using the data, based on framing the ASTER GDEM data, we used Erdas software to splice and prepare the ASTER GDEM mosaic of the Tibetan Plateau. This data set contains three data files: ASTER_GDEM_TILES ASTERGDEM_MOSAIC_DEM ASTERGDEM_MOSAIC_NUM The ASTER GDEM data of the Tibetan Plateau have an accuracy of 30 meters, the raw data are in tif format, and the mosaic data are stored in the img format. The raw data of this data set were downloaded from the ASTERGDEM website and completely retained the original appearance of the data. ASTER GDEM was divided into several 1×1 degree data blocks during distribution. The distribution format was the zip compression format, and each compressed package included two files. The file naming format is as follows: ASTGTM_NxxEyyy_dem.tif ASTGTM_NxxEyyy_num.tif xx is the starting latitude, and yyy is the starting longitude. _dem.tif is the dem data file, and _num.tif is the data quality file. ASTER GDEM TILES: The original, unprocessed raw data are retained. ASTERGDEM_MOSAIC_DEM: Inlay the dem.tif data using Erdas software, and parameter settings use default values. ASRERGDEM_MOSAIC_NUM: Inlay the num.tif data using Erdas software, and parameter settings use default values. The original raw data are retained, and the accuracy is consistent with that of the ASTERGDEM data distribution website. The horizontal accuracy of the data is 30 meters, and the elevation accuracy is 20 meters. The mosaic data are made by Erdas, and the parameter settings use the default values.

    2020-06-03 1391 106 View Details

  • The SRTM digital elevation dataset of the Tibetan Plateau (2000)

    The SRTM digital elevation dataset of the Tibetan Plateau (2000)

    The SRTM (Shuttle Radar Topography Mission) data were obtained from the Endeavour space shuttle jointly launched by NASA and NIMA in February 2000. The SRTM system on the Endeavour had been collecting data for 222 hours and 23 minutes. It covered more than 80% of the global land surface from 60° north latitude to 56° south Latitude, including the whole territory of China. The radar image data acquired by the program have been processed for more than two years to form a digital terrain elevation model. The raw data of this data set were downloaded from the SRTM data distribution website (http://srtm.csi.cgiar.org). For the convenience of using the data, based on the framing of STRM data, we use Erdas software to splice and prepare the STMR mosaic of the Tibetan Plateau. The accuracy is 30 meters, and the data are in geoTIFF format. The raw data of this data set was downloaded from the SRTM data distribution website (http://srtm.csi.cgiar.org). The SRTM data provides a file for each latitude and longitude square. There are two kinds of longitude files, which are 1 arc-second and 3 arc-second, denoted SRTM1 and SRTM3, or 30-m and 90-m data. This data set comprises SRTM3 data with a resolution of 90 m, and the version is SRTM V4.1 (GeoTIFF format).

    2020-06-03 1160 49 View Details

  • Dataset of gridded daily precipitation in China (Version 2.0) (1961-2013)

    Dataset of gridded daily precipitation in China (Version 2.0) (1961-2013)

    The National Meteorological Information Center Meteorological Data Room has detected, controlled and corrected the quality of 2474 national-level ground stations' basic meteorological data and formed a set of high-quality, national and provincial ground-based basic data files. On the basis of the basic ground data of the precipitation data files, the thin-plate spline method is used, introducing the digital elevation data to eliminate the influence of the elevation on the precipitation precision under the unique terrain conditions in China. A dataset of 0.5°×0.5° grid values for the surface precipitation in China since 1961 is established. It provides a data basis for accurately describing the trends and magnitudes of precipitation changes in China. One of two data sources for the development of “Dataset of Gridded Daily Precipitation in China (Version 2.0)” was 1) the monthly and daily precipitation data of 2474 national-level stations in the country archived by the Meteorological Data Room for nearly 50 years. The information comes from the monthly information of the “Monthly Report of the Surface Meteorological Record” reported by the climate data processing departments of all the provinces, municipalities and autonomous regions. That information is collected, organized and strictly checked and reviewed by the National Meteorological Information Center. Since the establishment of the station, many stations in the country have undergone historical changes such as business reform and station migration. In 1961, the total number of stations had stabilized above 2,000, and the number of backstage stations in the late 1970s reached 2,400. 2) The second data source was a Chinese range of 0.5°×0.5° digital elevation model data DEMs generated by GTOP030 data (resolution 30′′×30′′) resampling. For the quantitative analysis and evaluation of the data, please see the Dataset of Gridded Daily Precipitation in China - Data Specification.

    2020-06-03 2144 86 View Details