This dataset includes data recorded by the Cold and Arid Research Network of Lanzhou university obtained from an observation system of Meteorological elements gradient of Guazhou Station from January 1 to December 31, 2019. The site (95.673E, 41.405N) was located on a desert in the Liuyuan Guazhou, which is near Jiuquan city, Gansu Province. The elevation is 2016 m. The installation heights and orientations of different sensors and measured quantities were as follows: air temperature and humidity profile (2, 4, 8, 16, 32, and 48 m, towards north), wind speed and direction profile (windsonic; 2, 4, 8, 16, 32, and 48 m, towards north), air pressure (1.5 m), rain gauge (4 m), infrared temperature sensors (4 m, towards south, vertically downward), photosynthetically active radiation (4 m, towards south), soil heat flux (-0.05 m and -0.1m in south of tower), soil soil temperature/ moisture/ electrical conductivity profile -0.05, -0.1m, -0.2m, -0.4m, -0.6m and -0.8m in south of tower), four-component radiometer (4 m, towards south), sunshine duration sensor(4 m, towards south). The observations included the following: air temperature and humidity (Ta_2 m, Ta_4 m, Ta_8 m, Ta_16 m, Ta_32 m, and Ta_48 m; RH_2 m, RH_4 m, RH_8 m, RH_16 m, RH_32 m, and RH_48 m) (℃ and %, respectively), wind speed (Ws_2 m, Ws_4 m, Ws_8 m, Ws_16 m, Ws_32 m, and Ws_48 m) (m/s), wind direction (WD_2 m, WD_4 m, WD_8 m, WD_16 m, WD_32 m, and WD_48 m) (°), air pressure (press) (hpa), precipitation (rain) (mm), four-component radiation (DR, incoming shortwave radiation; UR, outgoing shortwave radiation; DLR_Cor, incoming longwave radiation; ULR_Cor, outgoing longwave radiation; Rn, net radiation) (W/m^2), infrared temperature (IRT) (℃), photosynthetically active radiation (PAR) (μmol/ (s m^2)), soil heat flux (Gs_0.05m, Gs_0.1m) (W/m^2), soil temperature (Ts_5 cm, Ts_10 cm, Ts_20 cm, Ts_40 cm, Ts_60 cm, and Ts_80 cm) (℃), soil moisture (Ms_5 cm, Ms_10 cm, Ms_20 cm, Ms_40 cm, Ms_60 cm, and Ms_80 cm) (%, volumetric water content),soil water potential (SWP_5cm, SWP_10cm, SWP_20cm, SWP_40cm, SWP_60cm, and SWP_80cm)(kpa), soil conductivity (Ec_5cm, Ec_10cm, Ec_20cm, Ec_40cm, Ec_60cm, and Ec_80cm)(μs/cm), sun time (h). The data processing and quality control steps were as follows: (1) The AWS data were averaged over intervals of 10 min for a total of 144 records per day. The data during August 3 to 24 were missing because the power supply failure; From April 4, 2019, 2m air temperature and humidity sensor failure; from May.10, 2019, 48m wind speed and direction sensor failure; from July, 2019, 10cm soil moisture sensor failure. (2) Data in duplicate records were rejected. (3) Unphysical data were rejected. (4) The data marked in red are problematic data. (5) The format of the date and time was unified, and the date and time were collected in the same column, for example, date and time: 2019-6-10 10:30.
ZHAO Changming ZHANG Renyi
This dataset includes data recorded by the Cold and Arid Research Network of Lanzhou university obtained from an observation system of Meteorological elements gradient of Linze Station from January 1 to December 31, 2019. The site (100.060° E, 39.237° N) was located on a cropland (maize surface) in the Guzhai Xinghua, which is near Zhangye city, Gansu Province. The elevation is 1400 m. The installation heights and orientations of different sensors and measured quantities were as follows: air temperature and humidity profile (4 and 8 m, towards north), wind speed and direction profile (windsonic; 4 and 8 m, towards north), air pressure (1 m), rain gauge (4 m), four-component radiometer (4 m, towards south), infrared temperature sensors (4 m, towards south, vertically downward), photosynthetically active radiation (4 m, towards south), soil heat flux (2 duplicates below the vegetation; -0.05 and -0.1m in south of tower), soil soil temperature/ moisture/ electrical conductivity profile (-0.2 and -0.4m), sunshine duration sensor (4 m, towards south). The observations included the following: air temperature and humidity (Ta_4 m, Ta_8 m; RH_3 m, RH_4 m, RH_8 m) (℃ and %, respectively), wind speed (Ws_4 m, Ws_8 m) (m/s), wind direction (WD_4 m, WD_8 m) (°), air pressure (press) (hpa), precipitation (rain) (mm), four-component radiation (DR, incoming shortwave radiation; UR, outgoing shortwave radiation; DLR_Cor, incoming longwave radiation; ULR_Cor, outgoing long wave radiation; Rn, net radiation) (W/m^2), infrared temperature (IRT) (℃), photosynthetically active radiation (PAR) (μmol/ (s m-2)), soil heat flux (Gs_5cm, Gs_10cm) (W/m^2), soil temperature (Ts_5 cm, Ts_10 cm) (℃), soil moisture (Ms_5 cm, Ms_10 cm) (%, volumetric water content), soil water potential(SWP_5cm, SWP_10cm), soil conductivity (Ec_5cm,Ec_10cm) (μs/cm), sun time(h). The data processing and quality control steps were as follows: (1) The AWS data were averaged over intervals of 10 min for a total of 144 records per day.The precipitation and the air humidity data were rejected due to program error. (2) Data in duplicate records were rejected. (3) Unphysical data were rejected. (4) The data marked in red are problematic data. (5) The format of the date and time was unified, and the date and time were collected in the same column, for example, date and time: 2019-6-10 10:30.
ZHAO Changming ZHANG Renyi
This dataset includes data recorded by the Cold and Arid Research Network of Lanzhou university obtained from an observation system of Meteorological elements gradient of Dunhuang Station from January 1 to December 31, 2019. The site (93.708° E, 40.348° N) was located on a wetland in the Dunhuang west lake, Gansu Province. The elevation is 990 m. The installation heights and orientations of different sensors and measured quantities were as follows: air temperature and humidity profile (4m and 8 m, towards north), wind speed and direction profile (windsonic; 4m and 8 m, towards north), air pressure (1 m), rain gauge (4 m), infrared temperature sensors (4 m, towards south, vertically downward), soil heat flux (-0.05 and -0.1m ), soil soil temperature/ moisture/ electrical conductivity profile (below the vegetation in the south of tower, -0.05 and -0.2 m), photosynthetically active radiation (4 m, towards south), four-component radiometer (4 m, towards south), sunshine duration sensor(4 m, towards south). The observations included the following: air temperature and humidity (Ta_4 m, Ta_8 m; RH_2 m, RH_4 m, RH_8 m) (℃ and %, respectively), wind speed (Ws_4 m, Ws_8 m) (m/s), wind direction (WD_4 m, WD_8 m) (°), air pressure (press) (hpa), precipitation (rain) (mm), four-component radiation (DR, incoming shortwave radiation; UR, outgoing shortwave radiation; DLR_Cor, incoming longwave radiation; ULR_Cor, outgoing longwave radiation; Rn, net radiation) (W/m^2), infrared temperature (IRT) (℃), photosynthetically active radiation (PAR) (μmol/ (s m-2)), soil heat flux (Gs_0.05m, Gs_0.1m) (W/m^2), soil temperature (Ts_0.05m, Ts_0.2m) (℃), soil moisture (Ms_0.05m, Ms_0.2m) (%, volumetric water content), soil conductivity (Ec_0.05m, Ec_0.2m)(μs/cm), sun time(h). The data processing and quality control steps were as follows: (1) The AWS data were averaged over intervals of 10 min for a total of 144 records per day. The air humidity data were rejected due to program error. (2) Data in duplicate records were rejected. (3) Unphysical data were rejected. (4) The data marked in red are problematic data. (5) The format of the date and time was unified, and the date and time were collected in the same column, for example, date and time: 2019-6-10 10:30.
ZHAO Changming ZHANG Renyi
This dataset includes data recorded by Cold and Arid Research Network of Lanzhou university obtained from an observation system of Meteorological elements gradient of Dayekou Station from January 1 to December 31, 2019. The site (100.285° E, 38.555° N) was located on a glassland in the Dayekou, which is near Zhangye city, Gansu Province. The elevation is 2694 m. The installation heights and orientations of different sensors and measured quantities were as follows: air temperature and humidity profile (8 m), air pressure (2 m), rain gauge (2 m), infrared temperature sensors (2 m, towards south, vertically downward), soil heat flux (below the vegetation, -0.05 m; towards south), soil soil temperature/moisture/electrical conductivity profile (-0.05 m) photosynthetically active radiation (2 m, towards south), four-component radiometer (2 m, towards south), sunshine duration sensor(2 m, towards south). The observations included the following: air temperature and humidity (Ta_8m; RH_3m, RH_5 m, RH_8m) (℃ and %, respectively), wind speed (Ws_8m) (m/s), wind direction (WD_8m) (°), air pressure (press) (hpa), precipitation (rain) (mm), four-component radiation (DR, incoming shortwave radiation; UR, outgoing shortwave radiation; DLR_Cor, incoming longwave radiation; ULR_Cor, outgoing longwave radiation; Rn, net radiation) (W/m^2), infrared temperature (℃), photosynthetically active radiation (PAR) (μmol/ (s m^2)), soil heat flux (Gs_5 cm) (W/m^2), soil temperature (Ts_5cm)(℃), soil moisture (Ms_5cm)(%, volumetric water content), photosynthetically active radiation (μmol/ (s m^2)), soil water potential (Swp_5cm)(kpa), soil conductivity (Ec_5cm)(μs/cm), sun time(h). The data processing and quality control steps were as follows: (1) The AWS data were averaged over intervals of 10 min for a total of 144 records per day. (2) Data in duplicate records were rejected. (3) Unphysical data were rejected. (4) The data marked in red are problematic data. (5) The format of the date and time was unified, and the date and time were collected in the same column, for example, date and time: 2019-6-10 10:30.
ZHAO Changming ZHANG Renyi
This dataset includes data recorded by the Cold and Arid Research Network of Lanzhou university obtained from an observation system of Meteorological elements gradient of Liancheng Station from January 1 to November 2, 2019. The site (102.737E, 36.692N) was located on a forest in the Tulugou national forest park, which is near Liancheng city, Gansu Province. The elevation is 2912 m. The installation heights and orientations of different sensors and measured quantities were as follows: air temperature and humidity profile (4 and 8 m, towards north), wind speed and direction profile (windsonic; 4 and 8 m, towards north), air pressure (1.5 m), rain gauge (2 m), four-component radiometer (4 m, towards south),infrared temperature sensors (2 m, towards south, vertically downward), photosynthetically active radiation (4 m, towards south), soil heat flux (2 duplicates below the vegetation;-0.05 and -0.1m in south of tower), soil soil temperature/ moisture/ electrical conductivity profile (below the vegetation;-0.05 and -0.1m in south of tower), sunshine duration sensor(4 m, towards south). The observations included the following: air temperature and humidity (Ta_4 m and Ta_8 m; RH_4 m and RH_8 m) (℃ and %, respectively), wind speed (Ws_2 m, Ws_4 m, and Ws_8 m) (m/s), wind direction (WD_2 m, WD_4 m, and WD_8 m) (°), air pressure (press) (hpa), precipitation (rain) (mm), four-component radiation (DR, incoming shortwave radiation; UR, outgoing shortwave radiation; DLR_Cor, incoming longwave radiation; ULR_Cor, outgoing longwave radiation; Rn, net radiation) (W/m^2), infrared temperature (IRT) (℃), photosynthetically active radiation (PAR) (μmol/ (s m-2)), soil heat flux (Gs_5 cm, Gs_10 cm) (W/m^2), soil temperature (Ts_5 cm, Ts_10 cm) (℃), soil moisture (Ms_5 cm, Ms_10 cm) (%, volumetric water content), soil water potential (SWP_5cm,SWP_10cm)(kpa), soil conductivity (EC_5cm,EC_10cm)(μs/cm), sun time (h). The data processing and quality control steps were as follows: (1) The AWS data were averaged over intervals of 10 min for a total of 144 records per day. (2) Data in duplicate records were rejected. (3) Unphysical data were rejected. (4) The data marked in red are problematic data. (5) The format of the date and time was unified, and the date and time were collected in the same column, for example, date and time: 2019-6-10 10:30.
ZHAO Changming ZHANG Renyi
This dataset includes data recorded by the Cold and Arid Research Network of Lanzhou university obtained from an observation system of Meteorological elements gradient of Minqin Station from August 16 to December 31, 2019. The site (103.668E, 39.208N) was located on a alpine meadow in the Wuwei, Gansu Province. The elevation is 1020 m. The installation heights and orientations of different sensors and measured quantities were as follows: air temperature and humidity profile (4 and 8 m, towards north), wind speed and direction profile (windsonic; 4, and 8 m, towards north), air pressure (1.5 m), rain gauge (4 m), four-component radiometer (4 m, towards south), infrared temperature sensors (4 m, towards south, vertically downward), photosynthetically active radiation (4 m, towards south), soil heat flux (-0.05 m and -0.1m in south of tower), soil soil temperature/ moisture/ electrical conductivity profile (-0.2 and -0.4 m in south of tower), sunshine duration sensor (4 m, towards south). The observations included the following: air temperature and humidity (Ta_4 m, and Ta_8 m; RH_4 m, and RH_8 m) (℃ and %, respectively), wind speed (Ws_4 m, and Ws_8 m) (m/s), wind direction (WD_4 m, and WD_8 m) (°), air pressure (press) (hpa), precipitation (rain) (mm), four-component radiation (DR, incoming shortwave radiation; UR, outgoing shortwave radiation; DLR_Cor, incoming longwave radiation; ULR_Cor, outgoing longwave radiation; Rn, net radiation) (W/m^2), infrared temperature (IRT) (℃), photosynthetically active radiation (PAR) (μmol/ (s/m^2)), soil heat flux (Gs_5 cm, Gs_10cm) (W/m^2), soil temperature (Ts_10 cm, Ts_20 cm) (℃), soil moisture (Ms_10 cm, Ms_20 cm) (%, volumetric water content), soil water potential (SWP_10cm , SWP_20cm)(kpa) , soil conductivity (Ec_10cm, Ec_20cm)(μs/cm), sun time (h). The data processing and quality control steps were as follows: (1) The AWS data were averaged over intervals of 10 min for a total of 144 records per day. The wind speed and direction profile data were rejected because of sensor failure; The soil water potential and moisture profile data were rejected because of sensor failure; (2) Data in duplicate records were rejected. (3) Unphysical data were rejected. (4) The data marked in red are problematic data. (5) The format of the date and time was unified, and the date and time were collected in the same column, for example, date and time: 2019-6-10 10:30.
ZHAO Changming ZHANG Renyi
Terrestrial actual evapotranspiration (ET), including evaporation from soil and water surfaces, evaporation of rainfall interception, transpiration of vegetation canopy and sublimation of snow and glaciers, is an important component of the terrestrial water cycle and links the hydrological, energy, and carbon cycles. The dataset of ETMonitor-GlobalET-2013-2014 is obtained based on ETMonitor model, which combines parameterizations for different processes and land cover types, with multi-source satellite data as input. Several remote sensing based variables, e.g. net radiation flux and dynamic water body area, and meteorological variables from ERA5 reanalysis dataset, were used as input to estimate daily ET. The ET estimation is conducted at daily temporal step and 1km spatial resolution, and the generated global ET dataset is at 5km resolution and daily time step for publication. The data type is 16-bit signed integer, the scale factor is 0.1, and the unit is mm/day.
ZHENG Chaolei JIA Li HU Guangcheng
Based on the WRF model, using ERA5 reanalysis data as the initial and boundary fields, the high-resolution low-level atmospheric structure and the earth atmosphere exchange data set of the Qinghai Tibet Plateau are preliminarily obtained by the method of dynamic downscaling. The time range of this data set is from August 1 to August 31, 2014, with a time resolution of 1 hour, a horizontal range of 25 °N-40 °N, 70oE-105oE, and a horizontal resolution of 0.05 °. The data format is NetCDF, and one file is output every hour. The file is named after the date. The lower atmospheric structure data includes temperature, relative humidity, water vapor mixing ratio, potential height, meridional wind and latitudinal wind meteorological elements, with 34 isobaric surfaces in the vertical direction; the surface air exchange data set includes the upward / downward short wave radiation, upward / downward long wave radiation, surface sensible heat and flux, 2m air temperature and water vapor mixing ratio, 10m wind, etc. The data set can provide data support for the study of weather process and climate environment in the Tibetan Plateau.
Ma Shupo
As the third pole of the Earth, the Tibetan Plateau has a significant impact on regional and global weather and climate as a heat source in spring and summer. In order to explore the temporal and spatial variation characteristics of multi-scale thermal forcing in different time on the plateau, it is necessary to establish a set of plateau heat source (collection) data based on observation data of continuous and reliable long-term observation. Based on the meteorological elements (surface temperature, surface air temperature, wind speed at the height of 10m, daily cumulative precipitation, etc.) of the 80 (32) observation stations on the Tibetan Plateau from 1979 to 2016 (1960-2016) of China Meteorological Bureau, the sensible heat(SH) and latent heat(LH) was calculated. Meanwhile, using satellite data processing to obtain the net radiation flux (RC) from 1984 to 2015 on the plateau, and then a set of quality controlled long-term plateau heat source data was obtained. This data set considers the diurnal variation of the overall heat transfer coefficient when calculating the surface sensible heat flux.
DUAN Anmin HU Wenting
This dataset contains the flux measurements from the Alpine meadow and grassland ecosystem Superstation superstation eddy covariance system (EC) belonging to the Qinghai Lake basin integrated observatory network from September 2 to December 18 in 2018. The site (98°35′41.62″E, 37°42′11.47″N) was located in the alpine meadow and alpine grassland ecosystem, near the SuGe Road in Tianjun County, Qinghai Province. The elevation is 3718m. The EC was installed at a height of 4.5 m, and the sampling rate was 10 Hz. The sonic anemometer faced north, and the separation distance between the sonic anemometer and the CO2/H2O gas analyzer (CSAT3A &EC150) was about 0.17 m. The raw data acquired at 10 Hz were processed using the Eddypro post-processing software, including the spike detection, lag correction of H2O/CO2 relative to the vertical wind component, sonic virtual temperature correction, coordinate rotation (2-D rotation), corrections for density fluctuation (Webb-Pearman-Leuning correction), and frequency response correction. The EC data were subsequently averaged over 30 min periods. The observation data quality was divided into three classes according to the quality assessment method of stationarity (Δst) and the integral turbulent characteristics test (ITC): class 1-3 (high quality), class 4-6 (good), class 7-8 (poor, better than gap filling data), class9 (rejected). In addition to the above processing steps, the half-hourly flux data were screened in a four-step procedure: (1) data from periods of sensor malfunction were rejected; (2) data collected before or after 1 h of precipitation were rejected; (3) incomplete 30 min data were rejected when the missing data constituted more than 3% of the 30 min raw record; and (4) data were rejected at night when the friction velocity (u*) was less than 0.1 m/s. There were 48 records per day, and the missing data were replaced with -6999. Data during December 18 to December 24, 2018 were missing due to the data collector failure. The released data contained the following variables: data/time, wind direction (Wdir, °), wind speed (Wnd, m/s), the standard deviation of the lateral wind (Std_Uy, m/s), virtual temperature (Tv, ℃), H2O mass density (H2O, g/m3), CO2 mass density (CO2, mg/m3), friction velocity (ustar, m/s), stability (z/L), sensible heat flux (Hs, W/m2), latent heat flux (LE, W/m2), carbon dioxide flux (Fc, mg/ (m2s)), quality assessment of the sensible heat flux (QA_Hs), quality assessment of the latent heat flux (QA_LE), and quality assessment of the carbon flux (QA_Fc). In this dataset, the time of 0:30 corresponds to the average data for the period between 0:00 and 0:30; the data were stored in *.xls format. Detailed information can be found in the suggested references.
LI Xiaoyan
The data set contains the observation data of 40 m tower automatic weather station from January 1, 2016 to December 31, 2016. The site is located in donghuayuan Town, Huailai County, Hebei Province. The longitude and latitude of the observation point are 115.7923e, 40.3574n and 480m above sea level. The automatic weather station is installed on a 40m tower with the acquisition frequency of 30s and output once every 10min. The observation elements include air temperature and relative humidity (3m, 5m, 10m, 15m, 20m, 30m, 40m) in the 7th floor, wind speed (3m, 5m, 10m, 15m, 20m, 30m, 40m) of the 7th floor, wind direction (10m), facing due north; air pressure (installed in waterproof box); rainfall (3m); four component radiation and photosynthetically active radiation (4m), facing due south; infrared surface temperature (8m) The soil temperature and humidity probe is buried 1.5m to the south of the meteorological tower, the soil temperature and humidity probe is buried at 2cm, 4cm, 10cm, 20cm, 40cm, 80cm, 120cm and 160cm, and the soil moisture sensor is 2cm, 4cm, 10cm, 20cm, 40cm, 80cm, 120cm and 160cm; the average soil temperature is buried in the underground 2, 4cm; soil heat flow The slabs (3 pieces) are buried 6 cm underground. Processing and quality control of observation data: (1) ensure 144 data per day (every 10 min), if there is data missing, it will be marked by - 6999; (2) eliminate the time with repeated records; (3) delete the data obviously beyond the physical meaning or instrument range; (4) the format of date and time is unified, and the date and time are in the same column. For example, the time is: 2016-6-10 10:30. The data released by automatic weather station include: date / time, date / time, air temperature (TA)_ 3m, Ta_ 5m, Ta_ 10m, Ta_ 15m, Ta_ 20m, Ta_ 30m, Ta_ 40m) (℃), relative humidity (RH)_ 3m, RH_ 5m, RH_ 10m, RH_ 15m, RH_ 20m, RH_ 30m, RH_ 40m) (%), wind speed (WS_ 3m, Ws_ 5m, Ws_ 10m, Ws_ 15m, Ws_ 20m, Ws_ 30m, Ws_ 40 m (M / s), wind direction (WD) (°), air pressure (HPA), precipitation (mm), four component radiation (DR, ur, DLR, ULR, RN) (w / m2), par (umol / S / m2), surface radiation temperature (IRT)_ 1、IRT_ 2) (℃), soil heat flux (GS)_ 1、Gs_ 2、Gs_ 3) (w / m2), multi-layer soil moisture (MS_ 2cm、Ms_ 4cm、Ms_ 10cm、Ms_ 20cm、Ms_ 40cm、Ms_ 80cm、Ms_ 120cm、Ms_ 160 cm) (%), multilayer soil temperature (TS_ 2cm、Ts_ 4cm、Ts_ 10cm、Ts_ 20cm、Ts_ 40cm、Ts_ 80cm、Ts_ 120cm、Ts_ 160 cm (℃), average soil temperature tcav (℃). Guo et al, 2020 is used for site introduction and Liu et al, 2013 for data processing
LIU Shaomin XU Ziwei XIAO Qing
Daily and Monthly evapotranspiration (5km x 5km spatial resolution) for global land area was derived from satellite data and a surface energy balance method (EB). The global 5 km daily and monthly ET dataset is produced with the revised SEBS algorithm in Chen et al. 2019 JGR and Chen et al. 2013 (JAMC). MODIS LST, NDVI, Global forest height, GlobAlbedo, GLASS LAI have been used in this ET calculation. The ET dataset will be updated to near-present with the availability of input dataset. The global 5 km sensible heat flux, net radiation, latent heat flux will be open with the email contact with Dr. Xuelong Chen. Daily ET File name: 20001201-ET-V1.mat, 2000-year, 12-month,01-day, ET-Evapotranspiration, V1-version 1;unit: mm/day (unit8 need transfer to single or double and should be divided by 10);data type: unit8 was used to save the disk space, 255 is used for ocean and water body pixels. Monthly ET File name: ETm200012-ET-V1.mat, 2000-year, 12-month, ET-Evapotranspiration, V1-version 1;unit: mm/month (int16 need transfer to single or double and should be divided by 10);data type: int16 was used to save the disk space, 0 is used for ocean and water body pixels. The daily ET dataset is produced with a similar method and satellite data as in Chen, X., et al., 2014: Development of a 10 year (2001–2010) 0.1° dataset of land-surface energy balance for mainland China, Atmos. Chem. Phys., 14, 13097–13117, doi:10.5194/acp-14-13097-2014. The calculation of roughness length and kB_1 for global land were updated by the method in Chen, X., et al, 2019, A Column Canopy‐Air Turbulent Diffusion Method for Different Canopy Structures, Journal of Geophysical Research: Atmospheres, 2019.01.15, 124. Most of the satellite input data were from MODIS. Meteorological data was from ERA-Interim. Global canopy height information was derived from GLAS and MODIS NDVI. The daily ET has a mean bias (MB) of 0.04 mm/day, RMSE is 1.56 (±0.25) mm/day.
CHEN Xuelong
We produced surface photosynthetic effective radiation (PAR), solar radiation (SSR) and net radiation (NR) products with 1KM resolution in the heihe basin in 2012.The temporal resolution ranges from instantaneous to hourly and daily.Day-by-day ancillary data were also produced, including aerosol optical thickness, moisture content, NDVI, snow cover, and surface albedo.Among them, PAR and SSR use the method of lookup table to directly invert by combining the stationary weather satellite and polar orbit satellite MODIS product.NR was calculated by analyzing the relationship between net short-wave and net surface radiation.Hourly instantaneous products are weighted by average and integral to obtain hourly and daily cumulative products.
Huang Guanghui
The dataset of eddy covariance observations was obtained at the Dayekou Guantan forest station (E100°15′/N38°32′, 2835m), south of Zhangye city, Gansu province, from Dec. 27, 2007 to Dec. 31, 2009. Guantan forest station was dominated by the spruce 15-20m high and the surface was covered by moss 10cm deep. All the vegetation was in good condition. The original observation items included the latitudinal wind speed Ux (m/s), the latitudinal wind speed Uy (m/s), the longitudinal wind speed Uz (m/s), the ultrasonic temperature Ts (°C), co2 consistency (mg/m^3), h2o consistency (g/m^3), air pressure (KPa) and the abnormal ultrasonic signal (diag_csat). The instrument mount-height was 20.02m, the ultrasound direction was at an azimuth angle of 74°, the distance between Li7500 and CSAT3 was 30cm and sampling frequency was 10HZ. The dataset was distributed at three levels: Level0 were the raw data acquired by instruments; Level1, including the sensible heat flux (Hs), the latent heat flux (LE_wpl), and co2 flux (Fc_wpl), were real-time eddy covariance output data and stored in .csv month by month; Level2 were processed data in a 30-minute cycle after outliers elimination, coordinates rotation, frequency response correction, WPL correction and initial quality control. The data were named as follows: station name +data level+data acquisition date. As for detailed information, please refer to Meteorological and Hydrological Flux Data Guide and Eddy Covariance Observation Manual.
LI Xin MA Mingguo Wang Weizhen Huang Guanghui TAN Junlei ZHANG Zhihui
The dataset of eddy covariance observations was obtained at the Yingke Oasis station from 27 Dec. 2007 to 31 Dec. 2009. The observation site is located in an irrigation farmland in Yingke (E100°24′37.2″/N38°51′25.7″, 1519.1m), Zhangye city, Gansu province. The experimental area, situated in the middle stream Heihe river basin and with windbreaks space of 500m from east to west and 300m from south to north, is an ideal choice for its flat and open terrain. The original observation items included the latitudinal wind speed Ux (m/s), the latitudinal wind speed Uy (m/s), the longitudinal wind speed Uz (m/s), the ultrasonic temperature Ts (°C), co2 consistency (mg/m^3), h2o consistency (g/m^3), air pressure (KPa) and the abnormal ultrasonic signal (diag_csat). The instrument mount was 2.81m, the ultrasound direction was at an azimuth angle of 0°, the distance between Li7500 and CSAT3 was 30cm and the sampling frequency was 10HZ/s. The dataset was distributed at three levels: Level0 were the raw data acquired by instruments; Level1, including the sensible heat flux (Hs), the latent heat flux (LE_wpl), and co2 flux (Fc_wpl), were real-time eddy covariance output data and stored in .csv month by month; Level2 were processed data in a 30-minute cycle after outliers elimination, coordinates rotation, frequency response correction, WPL correction and initial quality control. The data files were named as follows: station name +data level+data acquisition date. As for detailed information, please refer to Meteorological and Hydrological Flux Data Guide and Eddy Covariance Observation Manual.
Liu Qiang LIU Qinhuo MA Mingguo Wang Weizhen Huang Guanghui ZHANG Zhihui TAN Junlei
The dataset of eddy covariance observations was obtained at the A'rou freeze/thaw observation station from Jul. 14, 2008 to Dec. 31, 2010, in Wawangtan pasture (E100°28′/N38°03′, 3032.8m), Daban, A'rou. The experimental area with a flat and open terrain slightly sloping from southeast to northwest and hills and mountains stretching outwards is an ideal horizontal homogeneous underlying surface. The original observation items included the latitudinal wind speed Ux (m/s), the latitudinal wind speed Uy (m/s), the longitudinal wind speed Uz (m/s), the ultrasonic temperature Ts (°C), co2 consistency (mg/m^3), h2o consistency (g/m^3), air pressure (KPa) and the abnormal ultrasonic signal (diag_csat). The instrument height was 2.81m, the ultrasound direction was at an azimuth angle of 0°, the distance between Li7500 and CSAT3 was 30m and sampling frequency was 10HZ/s. The instrument mount was 3.15m, the ultrasound direction was at an azimuth angle of 86°, the distance between Li7500 and CSAT3 was 22cm and sampling frequency was 10HZ/s. The dataset was released at three levels: Level0 were the raw data acquired by instruments; Level1, including the sensible heat flux (Hs), the latent heat flux (LE_wpl), and co2 flux (Fc_wpl), were real-time eddy covariance output data and stored in .csv month by month; Level2 were processed data in a 30-minute cycle after outliers elimination, coordinates rotation, frequency response correction, WPL correction and initial quality control. The data were named as follows: station name +data level+data acquisition date. As for detailed information, please refer to Meteorological and Hydrological Flux Data Guide and Eddy Covariance Observation Manual.
Wang Weizhen MA Mingguo LI Xin JIN Rui Huang Guanghui Zhang Zhihui TAN Junlei
The data set contains all single glacial reserves (in KM3) in the Tibetan Plateau of 1970s and 2000s. This data set comes from the result data of the paper entitled "consolidating the Randolph glacier inventory and the glacier inventory of China over the Qinghai titanium plate and investigating glacier changes since the mid-20th century". The first draft of this paper has been completed and is planned to be submitted to earth system science data. The 1970s basic glacier catalog data in the dataset is extracted from Randolph glacier Inventory data set, 2000s basic glacial catalogue is from China's second glacial catalogue data set. Based on the glacial boundary extracted from the two data sets and combined with the grid based bedrock elevation data set (https://www.ngdc.noaa.gov/mgg/global/global.html, DOI: 10.7289/v5c8276m) and the glacial table obtained by a slope dependent method Based on the surface elevation data set, the single glacier reserves in the two catalogues are calculated. In addition, the calculation results of single glacier reserves obtained in this study have been compared and verified with the calculation results of partial glacier reserves, relevant remote sensing data sets, and the global glacier thickness data set based on the average of multiple glacier model sets in multiple directions, and the errors in the calculation results have also been quantified. The establishment of the data set is expected to provide the data basis for the future regional water resources estimation and glacier ablation research, and the acquisition of the data also provides a new idea for the future glacier reserves research.
WANG Zhongjing
Near-surface atmospheric driving data prepared by ETMonitor and WRF models based on remote sensing surface evapotranspiration model were used to estimate the average surface evapotranspiration of the heihe river basin with a resolution of 250m in 8 days from may to September 2012.The coordinate system is the projection of equal latitude and longitude, and the spatial range is 96.5e -- 102.5e, 37.5n -- 43N.8 days data using synthetic way of storage, the data format for GEOTIFF, naming: 2012 ddd_evapotranspiration. Tif, including a DDD, ordinal number, for example 2012121 _evapotranspiration. Tif said 2012 day ordinal number is 121-128 days, the average surface evaporation unit is mm/d.The data type is single-precision floating point with an invalid value of -9.
JIA Li
Near-surface atmospheric driving data prepared by ETMonitor and WRF models based on remote sensing surface evapotranspiration model were used to estimate the daily surface evapotranspiration of the heihe river basin at 1km from 2009 to 2011.The coordinate system is the longitude and latitude projection, and the spatial range is 96.5e -- 102.5e, 37.5n -- 43N.Using daily data storage, data format for GEOTIFF, naming: yyyyddd_EvapoTranspiration. tif, including yyyy for years, DDD for ordinal.The data type is single-precision floating point in mm/d and the invalid value is -9.
JIA Li
This data set contains the eddy related data of Zhangye National Climate Observatory from 2008 to 2009. The station is located in Zhangye, Gansu Province, with longitude and latitude of 100 ° 17 ′ e, 39 ° 05 ′ N and altitude of 1456m. For more information, see the documentation that came with the data.
Zhangye city meteorological bureau