The thickness of the active layer of the three pole permafrost combines two sets of data products. The main reference data is the annual value of the active layer thickness from 1990 to 2015 generated by GCM model simulation. The data format of this data set is netcdf4 format, with a spatial resolution of 0.5 ° and a temporal resolution of years. The reference correction data set is the average value of active layer thickness from 2000 to 2015 simulated by statistical and machine learning (ML) methods. The data format is GeoTIFF format, the spatial resolution is 0.1 °, and the data unit is m. Through post-processing operations such as data format conversion, spatial interpolation, data correction, etc., this research work generates the permafrost active layer thickness data in netcdf4 format, with a spatial resolution of 0.1 °, a temporal resolution of years, a time range of 1990-2015, and a data unit of CM.
YE Aizhong
The original data of carbon flux in the three pole permafrost region are generated by GCM model simulation, and the original data are from http://www.cryosphere.csdb.cn/portal/metadata/5abef388-3f3f-4802-b3de-f4d233cb333b 。 This data set contains the prediction of future scenarios under different representative concentration paths (RCPs) in the next 2046-2065 years, including rcp2.6 scenario, rcp4.5 scenario and rcp8.5 scenario. The original data include parameters representing carbon flux such as NPP and GPP in the permafrost region of the Qinghai Tibet Plateau. The data format is netcdf4 format, with a spatial resolution of 0.5 ° and a temporal resolution of years. Through data format conversion, spatial interpolation and other post-processing operations, the NPP and GPP data in permafrost region in netcdf4 format are generated. The spatial resolution is 0.1 °, the time resolution is years, the time range is 2046-2065, and the data unit is gc/m2yr.
YE Aizhong
The original thickness data of the active layer of the three pole permafrost are generated by GCM model simulation, and the original data are from http://www.cryosphere.csdb.cn/portal/metadata/5abef388-3f3f-4802-b3de-f4d233cb333b 。 This data set contains the prediction of future scenarios under different representative concentration paths (RCPs) in the next 2046-2065 years, including rcp2.6 scenario, rcp4.5 scenario and rcp8.5 scenario. The content of the original data is the thickness of the active layer in the permafrost area of the Qinghai Tibet Plateau. The data format is netcdf4, with a spatial resolution of 0.5 ° and a temporal resolution of years. Through data format conversion, spatial interpolation and other post-processing operations, the active layer thickness in permafrost area in netcdf4 format is generated, with a spatial resolution of 0.1 °, a time resolution of years, a time range of 2046-2065, and the unit is cm.
YE Aizhong
The data of Cenozoic plant macrofossils on the Qinghai Tibet Plateau includes leaves, seeds and fruits. It includes Latin and Chinese names of families, genera and species, times, places of origin, morphological descriptions, discussions, specimens and references. The species names are assigned according to the original literature. For fossil records revised by later research, the revised records were chosen; The age of the origin (fossil site) is assigned according to the latest literature. The terms and description paradigm of leaf shape description are referred to the book "Leaf Structure Manual"; The length, angle, and other measurement data in the description are derived from the original literature. The fossil records of the document are sorted alphabetically by Latin initials of families and genera. The data can provide important clues for studying the coupling relationship between the environmental climate changed and the evolution of vegetation and plant diversity in the Cenozoic Qinghai Tibetan Plateau.
ZHOU Zhekun , LIU Jia , CHEN Linlin , ROBERT Spicer , LI Shufeng , HUANG Jian , ZHANG Shitao , HUANG Yongjiang , JIA Linbo , HU Jinjin , SU Tao
The Qinghai Tibet Plateau is known as the "Asian water tower", and its runoff, as an important and easily accessible water resource, supports the production and life of billions of people around, and supports the diversity of ecosystems. Accurately estimating the runoff of the Qinghai Tibet Plateau and revealing the variation law of runoff are conducive to water resources management and disaster risk avoidance in the plateau and its surrounding areas. The glacier runoff segmentation data set covers the five river source areas of the Qinghai Tibet Plateau from 1971 to 2015, with a time resolution of year by year, covering the five river source areas of the Qinghai Tibet Plateau (the source of the Yellow River, the source of the Yangtze River, the source of the Lancang River, the source of the Nujiang River, and the source of the Yarlung Zangbo River), and the spatial resolution is the watershed. Based on multi-source remote sensing and measured data, it is simulated using the distributed hydrological model vic-cas coupled with the glacier module, The simulation results are verified with the measured data of the station, and all the data are subject to quality control.
WANG Shijin
Normalized Difference Vegetation Index (NDVI) has been widely used for monitoring vegetation. This dataset employed all available Landsat 5/7/8 data on the Qinghai-Tibetan Plateau (QTP) (> 100,000 scenes), and reconstructed high spatiotemporal NDVI time-series data (30-m and 8-d) during 2000-2020 on the TP (QTP-NDVI30) by using the MODIS-Landsat fusion algorithm (gap filling and Savitzky–Golay filtering;GF-SG). For the details of GF-SG, please refer to Chen et al. (2021). This dataset has been evaluated carefully. The quantitative assessments show that the reconstructed NDVI images have an average MAE value of 0.02, correlation coefficient of 0.96, and SSIM value of 0.94. We compared the reconstructed images in some typical areas with the PlanetScope 3-m images and found that the spatial details were well preserved by QTP-NDVI30. The geographic coordinate system of this dataset is GCS_WGS_84. The spatial range covers the vegetation area of the QTP, which is defined as the areas with average NDVI during July- September larger than 0.15.
CAO Ruyin , XU Zichao , CHEN Yang , SHEN Miaogen , CHEN Jin
The Second Tibetan Plateau Scientific Expedition and Research Task V Theme III "Conservation and Sustainable Utilization of Plateau Microbial Diversity" (2019QZKK0503) carried out more than 30 field scientific expeditions in the first and second years. Footprints cover most of the Tibetan Plateau, including the investigation of glaciers (such as Qiangyong Glacier, Tanggula Glacier, Everest East Rongbu glacier, Jiemayangzong Glacier, Palung 4 Glacier, etc.), lakes, soils, fungi, lichens, animals in Southeast Tibet, Qiangtang Plateau, Cocosili and Himalayan region. The dataset contains 6,471 photos and videos, including habitat photos, working photos, and scientific images collected during the first and second years of fieldwork.
LIU Yongqin
The Qinghai-Tibet Plateau and its surrounding alpine areas have bred a high degree of plant diversity, and their composition sources are complex. The Qinghai-Tibet Plateau is not only the distribution center of modern alpine plants, but also inextricably linked with plants in other areas. The plants growing in this area have unique gene resources to adapt to the plateau environment. Due to the limit of technology, the mining and utilization of plant gene resources in this area is still in its infancy. Through comparative genomics research on two species of Gentianaceae, we can analyze the genomic effect of plant mating system evolution, discover the key genes related to selfing, and explore the maintenance mechanism of plant hybrid mating system. The content of this data collection is listed as follows: the original genome data of the Halenia elliptica and the Halenia grandiflora , including the third-generation pacbio sequencing data of Halenia elliptica and the Halenia grandiflora, and the second-generation Illumina sequencing data of the Halenia elliptica and the Halenia grandiflora.
DUAN Yuanwen
This dataset is a raster dataset of annual rainfall erosivity on the Qinghai-Tibet Plateau from 1960 to 2019. The rainfall erosivity was calculated using the daily rainfall data of 129 stations in the Qinghai-Tibet Plateau and its surrounding 150km range, of which 74 stations were located inside the Qinghai-Tibet Plateau and 55 stations were located outside. The calculation method is consistent with the algorithm of the first national Water Resources Inventory, using WGS_ 1984 coordinate system and Albers projection (central meridian 105°E, standard parallels 25°N and 47°N), and then Kriging interpolation is carried out year by year to generate grid map with spatial resolution of 250m. Rainfall erosivity is the main dynamic factor of soil erosion, and it is also the basic factor calculated by models such as CSLE and RUSLE. The integrated daily rainfall data of long-time series has high data accuracy, which improves the accuracy of rainfall erosivity estimation, and also helpful to further accurately estimate the amount of soil erosion on the Qinghai Tibet Plateau.
ZHANG Wenbo
The population, grain, grain sown area and year-end data sets are extracted from the provincial and prefecture level statistical yearbooks of Qinghai, Tibet, Xinjiang, Gansu, Sichuan and Yunnan for many consecutive years. The missing data are interpolated as follows: 1. To ensure the accuracy of county data, Some counties and cities have been merged in this data (there may be errors in dividing and imputing the data for 20 years according to the proportion, but there will certainly be no problem in the merger, and the county area is small, so it is merged). 2. Xiahe County and cooperative city are merged into Xiahe County (cooperative city was separated from Xiahe County in 1998). 3. Gucheng district and Yulong County are merged into Gucheng district (Lijiang County was divided into Gucheng district and Yulong County in 2003). 4. The inner city district, East City District, West City District The four districts in Chengbei district have been merged into the district directly under the central government of Xining City (because the population of the four districts is given separately or the sum is given, and the total area of the four districts is only 487 square kilometers, they are merged). 5. For some missing data, curve fitting has been carried out in combination with similar years, and R2 is between 0.85-0.99. 6. In order to ensure the accuracy of the data, change maps have been prepared County by county
ZHANG Lu
The data set product contains the aboveground biomass and vegetation coverage data products of the Qinghai-Tibet Plateau every five years from 1990 to 2020 (1990, 1995, 2000, 2005, 2010, 2015 and 2020).The aboveground biomass of the Qinghai-Tibet Plateau is the remote sensing inversion product of above-ground biomass inversion models based on different land cover types including grassland, forest, etc. Vegetation coverage data of the Qinghai-Tibet Plateau is inversed using remote sensing by the dimidiate pixel model. Among them, the aboveground biomass and vegetation coverage data from 2000 to 2020 were estimated based on MODIS data, the spatial resolution was 250 m; the aboveground biomass and vegetation coverage data of 1990 and 1995 were estimated based on NOAA AVHRR data, the spatial resolution after resampling process is 250 m. This dataset can provide basic data for revealing the temporal and spatial pattern of land cover areas and quality on the Qinghai-Tibet Plateau and supporting the assessment of ecosystems, ecological assets and ecological security.
WU Bingfang
Data files are in 7Z compressed package format, which can be decompressed and opened by 7-zip software. There are three files in total, namely file 1, text version of grassland Degradation classification on The Qinghai-Tibet Plateau, file type is Word, and file 2, named As Map, with seven maps in total. The type of the image is PNG, and the name of the image is the trend rate of average NDVI change in the growing season of grass, grassland, meadow, grassland, alpine vegetation, desert and swamp on the Tibetan Plateau from 2010 to 2019. File 3. The folder named as data is filled with pictures. There are 7 kinds of pictures with the same names as above.
ZHOU Huakun
Vegetation primary productivity (Net Primary Production, NPP) dataset, source data from MODIS product (MOD17A3H), after data format conversion, projection, resampling and other preprocessing. The existing format is TIFF format, the projection is Krasovsky_1940_Albers projection, the unit is kg C/m2/year, and the spatial range is the entire Qinghai-Tibet Plateau. The spatial resolution of the data is 500 meters, the temporal resolution is every 5 years, and the time range is from 2001 to 2020. The NPP of the Qinghai-Tibet Plateau showed a trend of increasing gradually from northwest to southeast.
ZHU Juntao
Land cover refers to the mulch formed by the current natural and human influences on the earth's surface. It is the natural state of the earth's surface, such as forests, grasslands, farmland, soil, glaciers, lakes, swamps and wetlands, and roads. The Land Cover (LC) dataset is original from MODIS products and preprocessed by format conversion, projection and resampling. The existing format is TIFF and projection is Krasovsky_1940_Albers. The data set has a spatial resolution of 1000 meters and provides one image per year during the period from 2002 to 2020. Land cover products were classified into 17 categories defined by the International Geosphere Biosphere Programme (IGBP), including 11 categories of natural vegetation, 3 categories of land use and Mosaic, and 3 categories of non-planting land.
ZHU Juntao
The Normalized Difference Vegetation Index (LST) dataset is original from MODIS products and preprocessed by format conversion, projection and resampling. The existing format is TIFF and projection is Krasovsky_1940_Albers. The data set has a spatial resolution of 1000 meters and provides one image per year during the period from 2001 to 2020. NDVI products are calculated by reflectance of red and near-infrared bands, which can be used to detect vegetation growth state and vegetation coverage. NDVI is ranged from -1 to 1, and the negative value means the land is covered by snow, water, etc. By contrast, positive value means vegetation coverage, and the coverage increases with the increase of NDVI.
ZHU Juntao
This dataset contains daily 0.05°×0.05° land surface soil moisture products in Qilian Mountain Area in 2021. The dataset was produced by utilizing the optimized wavelet-coupled-RF downscaling model (RF-OWCM) to downscale the SMAP L3 Radiometer Global Daily 36 km EASE-Grid Soil Moisture (SMAP L3, V8). The auxiliary datasets participating in the downscaling model include the MUltiscale Satellite remotE Sensing (MUSES) LAI/FVC product, the daily 1-km all-weather land surface temperature dataset for the Chinese landmass and its surrounding areas (TRIMS LST-TP;) and Lat/Lon information.
CHAI Linna, ZHU Zhongli, LIU Shaomin
Based on the "second Qinghai Tibet Plateau comprehensive scientific investigation" and "China's soil series investigation and compilation of China's soil series" "The obtained soil survey profile data, using predictive Digital Soil Mapping paradigm, using geographic information and remote sensing technology for fine description and spatial analysis of the soil forming environment, developed adaptive depth function fitting methods, and integrated advanced ensemble machine learning methods to generate a series of soil attributes (soil organic carbon, pH value, total nitrogen, total phosphorus, total potassium, cation exchange capacity, gravel content (>2mm) in the Qinghai Tibet plateau region." , sand, silt, clay, soil texture type, unit weight, soil thickness, etc.) and quantify the spatial distribution of uncertainty. Compared with the existing soil maps, it better represents the spatial variation characteristics of soil properties in the Qinghai Tibet Plateau. The data set can provide soil information support for the study of soil, ecology, hydrology, environment, climate, biology, etc. in the Qinghai Tibet Plateau.
LIU Feng, ZHANG Ganlin
To explore inorganic hydrochemical characteristics of the upper Yarlung Zangbo River, water samples were collected from the main stream and different tributaries in this region in August 2020. The water was collected with 100mL polyethylene (PE) plastic bottle, and the basic physical and chemical parameters such as pH value (±0.2) and dissolved oxygen (±1%) of the sampling site were measured by multi -parameter water quality monitor (YSI-EX02,USA).,and HCO3- concentration was titrated with 0.025mol/L HCl.The concentrations of Na+, K+, Ca2+, Mg2+, SO42-, NO3- and Cl- ions were analyzed and determined by ion chromatograph (Shenhan CIC-D160, China) in the laboratory. Using Gibbs model, correlation analysis and principal component analysis method, analyzed the one main ion concentration changes, chemical composition characteristics, analytical, and the ion source was designed to reveal inorganic water chemical characteristics of The Tibet plateau glacier melt water runoff, and for plateau typical river water and changing trend forecast provides the basis.
NIU Fengxia
The dataset includes three high-resolution DSM data as well as Orthophoto Maps of Kuqionggangri Glacier, which were measured in September 2020, June 2021 and September 2021. The dataset is generated using the image data taken by Dajiang Phantom 4 RTK UAV, and the products are generated through tilt photogrammetry technology. The spatial resolution of the data reaches 0.15 m. This dataset is a supplement to the current low-resolution open-source topographic data, and can reflect the surface morphological changes of Kuoqionggangri Glacier from 2020 to 2021. The dataset helps to accurately study the melting process of Kuoqionggangri Glacier under climate change.
LIU Jintao
This dataset provides the monitoring data of runoff, precipitation and temperature of the Duodigou Runoff Experimental Station located in the northern suburbs of Lhasa city. Among the dataset, there are two runoff monitoring stations, which provide discharge data from June to December 2019, with a data step of 10 minutes. There are five precipitation monitoring stations, which provide precipitation data from 2018 to 2021, with a data step of 1 day. There are eight air temperature monitoring stations, which provide air temperature data from 2018 to 2021 in 30 minute steps. The discharge, the precipitation and the temperature data are the measured values. The dataset can provide data support for the study of hydrological and meteorological processes in the Tibet Plateau.
LIU Jintao