WATER: EO-1 Hyperion dataset

Eo-1 (Earth Observing Mission) is a new Earth Observing satellite developed by NASA to replace Landsat7 in the 21st century. It was launched on November 21, 2000.The orbit of eo-1 satellite is basically the same as that of Landsat7, which is a solar synchronous orbit with an orbital altitude of 705km and an inclination Angle of 98.7°, which is 1min less than that of Landsat7 and crosses the equator.On board of EO 1 3 kinds of sensors, namely, the Advanced Land Imager (ALI (the Advanced Land Imager), atmospheric correction instrument AC (Atmosp heric Corrector) and compose a specular as spectrometer (Hyperion), Hyperion sensor is first spaceborne hyperspectral mapping measurement instrument, the hyperspectral data a total of 242 bands, spectral range is 400 ~ 2500 nm, spectral resolution up to 10 nm, ground resolution of 30 m. Currently, there are 6 scenes of eo-1 Hyperion data in heihe river basin.The coverage and acquisition time were: 4 scenes in the encrypted observation area of zhangye urban area + yingke oasis encrypted observation area (2007-09-10, 2008-05-12, 2008-05-20, 2008-07-15).Two scenes of the iceditch watershed observation area were encrypted, the time was 2008-03-17, 2008-03-22, respectively. Product grade is L1 without geometric correction. The eo-1 Hyperion remote sensing data set of heihe integrated remote sensing joint experiment was acquired by researcher wang jian and Beijing normal university through purchase. (note: "+" represents simultaneous coverage)

0 2020-10-10

WATER: Dataset of airborne microwave radiometers (K&Ka bands) mission in the Binggou watershed flight zone on Mar. 29, 2008

This data set was acquired by K & Ka band airborne microwave radiometer on March 29, 2008, in the Binggou watershed flight zone. Among them, K-band frequency is 18.7ghz, zenith angle observation, no polarization information; Ka band frequency is 36.0ghz, scanning imaging, scanning range ± 12 °, vertical polarization observation. The plane took off from Zhangye airport at 8:49 (Beijing time, the same below) and landed at 12:54. 9: At 25-12:08, 18 routes were flown according to the scheduled design, with a flight altitude of about 5000m and a flight speed of about 220-250km / hr. The original data is divided into two parts: microwave radiometer data and GPS data. The K-band of microwave radiometer belongs to non imaging observation, and the digital value obtained from instantaneous observation is recorded in the text file. Ka band belongs to imaging observation, which is different from L band and K band data. The original record of Ka band is hexadecimal text file. In data processing, the hexadecimal file needs to be converted to decimal system first, and then 112 data (the angle difference of each two data points is 24 / 112 = 0.214 degrees) are collected uniformly within the scanning range of 24 degrees. GPS data record the latitude and longitude of the flight and the aircraft attitude parameters. When using microwave radiometer to observe data, it is necessary to convert the digital value recorded into the bright temperature value according to the calibration coefficient (the calibration coefficient file is filed with the original observation data). At the same time, through the clock records of microwave radiometer and GPS, microwave observation and GPS record can be linked to match the geographical coordinate information for microwave observation. When processing Ka band data, the angle scanning effect should also be considered, and 112 data in the scanning period should be given geographical coordinate information respectively. Due to the coarse observation resolution of microwave radiometer, the effects of aircraft yaw, roll and pitch are generally ignored in data processing. According to the target and flight relative altitude (H), after calibration and coordinate matching, the observation information can also be gridded. The resolution (x) of K-band is consistent with that of observation footprint. The reference resolution is: x = 0.24h; the resolution of Ka band is 39m. After the above steps, we can get the products that users can use directly.

0 2020-03-09

WATER: PROBA CHRIS dataset (2008-2009)

Proba (project for on board autonomy) is the smallest earth observation satellite launched by ESA in 2001. Chris (compact high resolution imaging Spectrometer) is the most important imaging spectrophotometer on the platform of proba. It has five imaging modes. With its excellent spectral spatial resolution and multi angle advantages, it can image land, ocean and inland water respectively for different research purposes. It is the only on-board sensor in the world that can obtain hyperspectral and multi angle data at the same time. It has high spatial resolution, wide spectral range, and can collect rich information in biophysics, biochemistry, etc. At present, there are 23 scenes of proba Chris data in Heihe River Basin. The coverage and acquisition time are as follows: 4 scenes in Arjun dense observation area, 2008-11-18, 2008-12-05, 2009-03-29, 2009-05-22; 1 scene in pingdukou dense observation area, 2009-07-13; 7 scenes in Binggou basin dense observation area, 2008-11-19, 2008-11-26, 2008-12-06, 2009-01-10, 2009-03-04, 2009-03-30, 2009-03-31; dayokou basin dense observation area, 2009-07-13 There are two views in the observation area, 2008-10-23, 2009-06-08; one in Linze area, 2008-06-23; one in Minle area, 2008-10-22; seven in Yingke oasis dense observation area, 2008-04-30, 2008-05-09, 2008-06-04, 2008-07-01, 2008-07-19, 2009-05-31, 2009-08-10. The product level is L1 without geometric correction. Except that there are only four angles for the images of 2009-03-29 and 2009-05-24 in the Arjun encrypted observation area, each image has five different angles. The remote sensing data set of the comprehensive remote sensing joint experiment of Heihe River, proba Chris, was obtained through the "dragon plan" project (Project No.: 5322) (see the data use statement for details).

0 2020-03-09

Integrated remote sensing joint experiment of Heihe River: alos PALSAR remote sensing data set (2008)

The phased array type l-land synthetic aperture radar (PALSAR) is a phased array L-band SAR sensor mounted on alos satellite. The sensor has three observation modes: high resolution, scanning synthetic aperture radar and polarization, which make it possible to obtain a wider ground width than the general SAR. At present, there are 13 scenes of ALOS pallsar data in Heihe River Basin. The coverage and acquisition time are as follows: 1 scene in the northeast of Zhangye City, HH / HV polarization, 2008-04-25; 2 scenes in Binggou basin + Arjun encrypted observation area, HH / HV polarization, 2008-05-122008-06-27; 2 scenes in Dayekou basin + Yingke oasis intensified observation area, HH / HV polarization, 2008-05-122008-06-27; observation station encrypted observation area Survey area + Linze station densified observation area + Linze grassland densified observation area 2 scenes, HH / HV polarization, time 2008-05-122008-06-27; Linze station densified observation area 1 scene, HH / HV polarization, time 2008-05-12; Binggou basin densified observation area 1 scene, HH / HV polarization, time 2008-07-14; bindukou densified observation area 4 scenes, 2008-04-25 2 scenes, HH / HV polarization, 2008-06-10 2 scenes, HH pole Change. The product level is L1 without geometric correction. The alos PALSAR remote sensing data set of Heihe comprehensive remote sensing joint experiment was obtained from JAXA by Dr. Takeo tadono, researcher Ye Qinghua and Professor Shi Jiancheng (the cooperation project between Qinghai Tibet Institute of Chinese Academy of Sciences and JAXA). (Note: "+" means to overwrite at the same time)

0 2020-03-09

WATER: Dataset of automatic meteorological observations at the Dadongshu mountain pass snow observation station (2007-2009)

The dataset of automatic meteorological observations was obtained at the Dadongshu mountain snow observation station (E100°14′/N38°01′, 4101m) from Oct. 29, 2007 to Oct. 1, 2009. The experimental area with a flat and open terrain was slightly sloping from southeast to northwest. With alpine meadow and stones, and snow in autumn, winter and spring, the landscape was ideal. Observation items were multilayer (2m and 10m) of the wind speed, the air temperature and air humidity, the air pressure, rain and snow gauges, snow depth, four components of radiation, the multilayer soil temperature (5cm, 10cm, 20cm, 40cm, 80cm, and 120cm), soil moisture (5cm, 10cm, 20cm, 40cm, 80cm, and 120cm), and soil heat flux (5cm & 15cm). The raw data were level0 and the data after basic processes were level1, in which ambiguous ones were marked; the data after strict quality control were defined as Level2. The data files were named as follows: station+datalevel+AMS+datadate. Level2 or above were strongly recommended to domestic users. As for detailed information, please refer to Meteorological and Hydrological Flux Data Guide.

0 2019-09-15

WATER: Dataset of automatic meteorological observations at the Binggou cold region hydrometerological station (2007-2009)

The dataset of automatic meteorological observations was obtained at the Binggou cold region hydrometerological station (N38°04′/E100°13′), south of Qilian county, Qinghai province, from Sep. 25, 2007 to Dec. 31, 2009. The experimental area with paramo and riverbed gravel, situated in the upper stream valley of Heihe river, is ideal for the flat and open terrain and hills and mountains stretching outwards. The items were multilayer (2m and 10m) of the air temperature and air humidity, the wind speed, the air pressure, precipitation, four components of radiation, the multilayer soil temperature (5cm, 10cm, 20cm, 40cm, 80cm and 120cm), soil moisture (5cm, 10cm, 20cm, 40cm, 80cm and 120cm), and soil heat flux (5cm and 15cm). The raw data were level0 and the data after basic processes were level1, in which ambiguous ones were marked; the data after strict quality control were defined as Level2. The data files were named as follows: station+datalevel+AMS+datadate. Level2 or above were strongly recommended to domestic users. The period from Sep. 25, 2007 to Mar. 12, 2008 was the pre-observing duration, during which hourly precipitation data (fragmented) and the soil temperature and soil moisture data were to be obtained. Stylized observations began from Mar. 12, 2008. As for detailed information, please refer to Meteorological and Hydrological Flux Data Guide.

0 2019-09-15

WATER: Dataset of runoff plot observations in the Binggou watershed foci experimental area from Jun to Oct, 2008

The dataset of runoff plot observations was obtained in the Binggou watershed foci experimental area from Jun. 19 to Oct. 17, 2008. The runoff plot (38°03′, 100°13′, 3472m, with a slope of 20.16°) was 10m long, 5m wide and 80cm deep, with soil depth about 50cm and sandy clay and gravels beneath (50-80cm). The main vegetation type is scrub (about 20cm high) and grass (about 3cm high). Observation items included the surface flow, interflow (80cm down the land surface), and precipitation at a fixed point at the right of the runoff plot. One subfolder and two data files (directions on data observations and raw data) were archived.

0 2019-09-14

WATER: Dataset of snow properties measured by the Snowfork in the Binggou watershed foci experimental area during the pre-observation period on Dec, 2007

The dataset of snow properties measured by the Snowfork was obtained in the Binggou watershed foci experimental area from Dec. 5-16 2007, during the pre-observation period. The aims of the measurements were to verify applicability of the instruments and to acquire snow parameters for simultaneous airborne, satellite-borne and ground-based remote sensing experiments and other control experiments. Observation items included: (1) physical quantities by direct observations: resonant frequency, the rate of attenuation and 3db bandwidth (2) physical quantities by indirect observations: snow density, snow complex permittivity (the real part and the imaginary part), snow volumetric moisture and snow gravimetric moisture. Five files including raw data and processed data are kept, data by the Snowfork on Dec 5, data by BG-A MODIS on Dec 6 and 7, data in BG-B, BG-C, BG-D and BG-E on Dec 10, and data in BG-D with the microwave radiometer on Dec 14 and 16.

0 2019-09-14

WATER: Dataset of ground truth measurements for snow synchronizing with the airborne PHI mission in the Binggou watershed foci experimental area (Mar. 24, 2008)

The dataset of ground truth measurements for snow synchronizing with the airborne PHI mission was obtained in the Binggou watershed foci experimental area on Mar. 24, 2008. Observation items included: (1) Snow density, snow complex permittivity, snow volumetric moisture and snow gravimetric moisture by the Snowfork in BG-A. (2) Snow parameters as the snow surface temperature by the handheld infrared thermometer, the snow layer temperature by the probe thermometer, the snow grain size by the handheld microscope, and snow density by the aluminum case in BG-A1, BG-A2, BG-B, BG-D, BG-E and BG-F5 (three sampling units each) from 11:11-12:35 (BJT) with the airplane overpass. 64 points were selected by four groups. (3) Snow albedo by the total radiometer in BG-A. (4) The snow spectrum by ASD (Xinjiang Meteorological Administration) in BG-A11 Two files including raw data and preprocessed data were archived.

0 2019-09-14

WATER: Dataset of snow properties measured by the Snowfork in the Binggou watershed foci experimental area on Mar, 2008

The dataset of snow properties measured by the Snowfork was obtained in the Binggou watershed foci experimental area from Mar. 10 to 30, 2008, in cooperation with simultaneous airborne, satellite-borne and ground-based remote sensing experiments and other control experiments. Observation items included (1) physical quantities by direct observations: resonant frequency, the rate of attenuation and 3db bandwidth; (2) physical quantities by indirect observations: snow density, snow complex permittivity (the real part and the imaginary part), snow volumetric moisture and snow gravimetric moisture. 13 files are archived, and the user guide of the sampling plot and observation background is included too.

0 2019-09-14