HiWATER:TerraSAR-X dataset

This dataset includes eight scenes, covering the artificial oasis eco-hydrology experimental area of the Heihe River Basin, which were acquired on (yy-mm-dd hh:mm) 2012-05-24, 2012-06-04, 2012-06-26, 2012-07-07, 2012-07-29, 2012-08-09, 2012-08-14, 2012-08-25. The data were all acquired around 19:00 (BJT) at StripMap mode with product level of MGD. Within them, the former six images are of HH/VV polarization with low incidence angle (22-24°), while the later two images acquired on 2012-08-14 and 2012-08-25 are of VV/VH polarization with higher incidence angle (39-40°). TerraSAR-X dataset was acquired from German Space Agency (DLR) through the general proposal of “Estimation of eco-hydrological variables using TerraSAR-X data in the Heihe River Basin, China” (project ID: HYD2096).

0 2020-10-13

WATER: MODIS dataset

This is the MODIS data with 499 scenes covering the whole Heihe River basin in 2008 and 2009. The acquisition time is from 2008-04-23 to 2008-09-30 (295 scenes), and from 2009-05-01 to 2009-10-01 (204 scenes). MODIS data products have 36 channels with resolutions of 250m, 500m and 1000m respectively. The data format is pds, unprocessed, and the MODIS processing software is filed together with the original data. MODIS remote sensing data of Heihe Integrated Remote Sensing Joint Test are provided by Gansu Meteorological Bureau.

0 2020-10-12

NDVI Dataset of Typical Stations in Midstream of Heihe River Basin Based on UAV Remote Sensing (2019, V1)

NDVI is a very important vegetation index for the research of vegetation growth and land cover classification. This dataset provides a monthly land surface albedo of UAV remote sensing with a spatial resolution of 0.2 m. It measured in the midstream of Heihe River Basin during the vegetation growth season over typical stations in 2019. The pix4D mapper software was used for image mosaic and NDVI calculation.

0 2020-07-31

Land Surface Albedo Dataset of Typical Stations in Middle Reaches of Heihe River Basin based on UAV Remote Sensing (2019, V1)

Surface albedo is a critical parameter in land surface energy balance. This dataset provides the monthly land surface albedo of UAV remote sensing for typical ground stations in the middle reaches of Heihe river basin during the vegetation growth stage in 2019. The algorithm for calculating albedo is an empirical method, which was developed based on a comprehensive forward simulation dataset based on 6S model and typical spectrums. This method can effectively transform the surface reflectance to the broadband surface albedo. The method was then applied to the surface reflectance acquired by UAV multi-spectral sensor and the broadband surface albedo with a 0.2-m spatial resolution was eventually obtained.

0 2020-07-16

WATER: Landsat dataset (2007-2008)

In 2007 and 2008, Landsat data set 49 scenes, covering the entire black river basin. The acquisition time is:2007-08-12, 2007-09-23, 2008-01-05, 2008-02-06, 2008-03-17, 2008-03-25, 2008-05-10, 2008-05-19, 2008-05-28, 2008-06-04, 2008-07-07, 2008-07-15, 2008-07-22, 2008-07-23, 2008-08-16, 2008-08-30,2008-09-08, 2008-09-15, 2008-09-17, 2008-10-01, 2008-10-10, 2008-10-19, 2008-10-26, 2008-11-02, 2008-11-04, 2008-11-18, 2008-11-20, 2008-11-27, 2008-12-06, 2008-12-13, 2008-12-14. The product is class L1 and has been geometrically corrected.It includes 4 scenes of TM image and 45 scenes of ETM+ image. The Landsat satellite remote sensing data set of heihe integrated remote sensing joint experiment was obtained through free download.

0 2020-06-08

The ENVISAT ASAR image dataset of the Heihe river basin (2007-2009)

ASAR (Advanced Synthetic Aperture Radar) is a Synthetic Aperture Radar sensor mounted on ENVISAT satellite. It operates in c-band with a wavelength of 5.6 cm and features multi-polarization, variable observation Angle and wide-range imaging. Heihe river basin of ENVISAT ASAR remote sensing data sets mainly through central Europe "dragon plan" project, the data to the Image mode, cross polarization (Alternating Polarisation) model with wide is given priority to, the spatial resolution of 30 meters. ENVISAT ASAR data 404 scenes are currently available in heihe river basin, including 82 scenes in APP mode, 7 scenes in IMP mode and 315 scenes in WSM mode. The acquisition time is: APP can choose the polarization mode, the time range is from 2007-08-15 to 2007-12-23, 2008-01-02 to 2008-12-20, 2009-02-15 to 2009-09-06; IMP imaging mode, time range from 2009-06-19 to 2009-07-12; WSM wide format, time range from 2005-12-05 to 2005-12-31,2006-01-06 to 2006-12-31, 2007-01-01 to 2007-12-30, 2008-01-01 to 2008-12-28, 2009-03-13 to 2009-05-22. Product level is L1B, without geometric correction, is amplitude data.

0 2020-06-08

HJ-CCD image dataset acquired covering Heihe Basin (2012)

This data set is the multispectral data used to retrieve 30 meter Lai and fAPAR products in 2012. It is obtained by the environmental satellite CCD sensor with a resolution of 30 m and four bands. This data set has been geometric corrected, radiometric corrected and converted into reflectivity image.

0 2020-06-05

Drone orthophoto image and DSM of Qinghai Hoh Xil plot (2018)

On August 22, 2018, a DJI camera was used in the fixed sample of Lancang River headwaters. The overlap degree of adjacent photos was not less than 70% according to the set flight route. The Orthophoto Image and DSM were generated using the photographs taken. The Orthophoto Image included three bands of red, green and blue, with a ground resolution of 2.5 cm, a shooting area of 1000m x 1000m and a DSM resolution of 4.5 cm. Due to the communication failure, the middle four airstrips were not photographed, so there was a band in the middle of the image missing.

0 2020-06-03

Spatial pattern data of five major cities in central Asia - Toshkent (1990, 2018)

Land use data of Toshtent, with a resolution of 30 meters, was in the form of TIF and the time was 1990.03.03 and 2018.03.16 respectively.Data source GLC, the raw data of its global land cover data comes from Envisat satellite and is captured by MERIS (Medium Resolution Imaging Spectrometer) sensor.There are currently two issues, GlobCover (Global Land Cover Map) and GlobCover (Global Land Cover Product).

0 2020-05-29

Basic dataset of great lakes in Central Asia –mark dataset of remote sensing interpretation (2015)

The remote sensing image interpretation mark is also called the interpretation factor, which can directly reflect the image features of the ground object information. The interpreter uses these marks to identify the nature, type or condition of the feature or phenomenon on the image, so it is for the remote sensing image data. Human-computer interactive interpretation is of great significance. The image used in the data to establish the interpretation mark avoids the summer with high vegetation coverage, and avoids the data with more snow cover, cloud cover or smog influence.According to the basic geographic information data extraction requirements, the combination of the remote sensing image band combination order and the full color band are selected.Avoid data loss when enhancing data. The requirement for selecting a typical marker-building area on an image is that the range is moderate to reflect the typical features of the type of landform, including as many basic geographic information elements as possible in the type of landform and the image quality is good. After the selection of the marking area is completed, look for all the basic geographic information element categories contained in the marking area, and then select various typical maps as the collection marks, then go to the field for field verification,including 3429 sampling reference points and 1,870 photos, and the translation of the library was established, and the unreasonable parts were modified until they were consistent with the field. At the same time, the ground photo of the map is taken to make the image and the actual ground elements relate to each other, expressing the authenticity and intuitiveness of the remote sensing image interpretation mark, and to deepen the user's understanding of the interpretation mark.

0 2020-05-29