Basic meteorological data of glacier moraine area at 24K in Galongla, Southeast Tibet station, Chinese Academy of Sciences (2018-2019)

The data are collected from the automatic weather station (AWS, Campbell company) in the moraine area of the 24K glacier in the Southeast Tibet Plateau, Chinese Academy of Sciences. The geographic coordinates are 29.765 ° n, 95.712 ° E and 3950 m above sea level. The data include daily arithmetic mean data of air temperature (℃), relative humidity (%), wind speed (M / s), net radiation (w / m2), water vapor pressure (kPa) and air pressure (mbar). In the original data, an average value was recorded every 30 minutes before October 2018, and then an average value was recorded every 10 minutes. The temperature and humidity are measured by hmp155a temperature and humidity probe. The net radiation probe is nr01, the atmospheric pressure sensor probe is ptb210, and the wind speed sensor is 05103. These probes are 2 m above the ground. Data quality: the data has undergone strict quality control. The original abnormal data of 10 minutes and 30 minutes are removed first, and then the arithmetic mean of each hour is calculated. Finally, the daily value is calculated. If the number of hourly data is less than 24, the data is removed, and the corresponding date data in the data table is empty. In addition to the lack of some parameter data due to the thick snow and low temperature in winter and spring, the data can be used by scientific researchers who study climate, glacier and hydrology through strict quality control.

0 2021-01-27

The ice storage in upper Indus River basin using GPR (Ground Penetrating Radar) and GlabTop2 (Glacier Bed Topography version 2)

1) These data main included the GPR-surveyed ice thickness of six typical various-sized glaciers in 2016-2018; the GlabTop2-modeled ice thickness of the entire UIB sub-basins, discharge data of the hydrological stations, and related raw & derived data. 2) Data sources and processing methods: We compared the plots and profiles of GPR-surveyed ice bed elevation with the GlabTop2-simulated results and selected the optimal parametric scheme, then simulated the ice thickness of the whole UIB basin and assessed its hydrological effect. These processed results were stored as tables and tif format, 3) Data quality description: The simulated ice thickness has a spatial resolution of 30 m, and has been verified by the GPR-surveyed ice thickness for the MD values were less than 10 m. The maximum error of the GPR-measured data was 230.2 ± 5.4 m, within the quoted glacier error at ± 5%. 4) Synthesizing knowledge of the ice thickness and ice reserves provides critical information for water resources management and regional glacial scientific research, it is also essential for several other fields of glaciology, including hydrological effect, regional climate modeling, and assessment of glacier hazards.

0 2020-12-31

Greenland ice sheet elevation change data V1.0 (2004-2008)

First of all, the data of ice cover elevation change is obtained by using the data of glas12 in 2004 and 2008. In ideal case, each track is strictly repeated. However, due to the track deviation, it can not be guaranteed that the track is strictly repeated according to the design. The deviation varies from several meters to several hundred meters. The grid of 500m * 500m is taken, and the point falling in the same grid is considered as the weight of the repeated track. The elevation change in 2004-2008 is obtained by subtraction of complex points, and the annual elevation change is obtained. Ice sheet elevation change data

0 2020-10-14

Climate record data set of ice core in Karakoram area

Among many indicators reflecting climate and environmental change, the stable isotope index of ice core is an indispensable parameter in the study of ice core record, and is one of the most reliable and effective ways to recover the past climate change. Ice core accumulation is a direct record of precipitation on glaciers, and high resolution ice core records ensure the continuity of precipitation records. Therefore, ice core records provide an effective means to recover precipitation changes. The isotope and accumulation of ice cores drilled from the Qinghai Tibet Plateau can be used to reconstruct the changes of temperature and precipitation, which is a good record of climate and environment. This data set provides stable isotope records of hushe ice core in Karakoram area and provides data support for the study of climate change in Qinghai Tibet Plateau.

0 2020-09-17

Data set of glacier advance and retreat range in Karakoram area

The ages of glacial traces of the last glacial maximum, Holocene and little ice age in the Westerlies and monsoon areas were determined by Cosmogenic Nuclide (10Be and 26Al) exposure dating method to determine the absolute age sequence of glacial advance and retreat. The distribution of glacial remains is investigated in the field, the location of moraine ridge is determined, and the geomorphic characteristics of moraine ridge are measured. According to the geomorphic location and weathering degree of glacial remains, the relationship between the new and the old is determined, and the moraine ridge of the last glacial maximum is preliminarily determined. The exposed age samples of glacial boulders on each row of moraine ridges were collected from the ridge upstream. This data includes the range of glacier advance and retreat in Karakoram area during climate transition period based on 10Be exposure age method.

0 2020-09-16

Basic datasets of Urumqi river basin in Chinese Cryospheric Information System

Chinese Cryospheric Information System is a comprehensive information system for the management and analysis of Chinese cryospheric data. The establishment of Chinese Cryospheric Information System is to meet the needs of earth system science, and provide parameters and verification data for the development of response and feedback models of permafrost, glacier and snow cover to global changes under GIS framework. On the other hand, the system collates and rescues valuable cryospheric data to provide a scientific, efficient and safe management and analysis tool. Chinese Cryospheric Information System contains three basic databases of different research regions. The basic database of Urumqi river basin is one of three basic databases, which covers the Urumqi river basin in tianshan mountain, east longitude 86-89 °, and north latitude 42-45 °, mainly containing the following data: 1. Cryospheric data.Include: Distribution of glacier no. 1 and glacier no. 2; 2. Natural environment and resources.Include: Terrain digital elevation: elevation, slope, slope direction; Hydrology: current situation of water resource utilization;Surface water; Surface characteristics: vegetation type;Soil type;Land resource evaluation map;Land use status map; 3. Social and economic resources: a change map of human action; Please refer to the documents (in Chinese): "Chinese Cryospheric Information System design. Doc" and "Chinese Cryospheric Information System data dictionary. Doc".

0 2020-07-31

Moraine distributions in the upstream of the Heihe River (2013-2014)

From 2013 to 2014, the Glacial Geomorphology of the upper reaches of Heihe River in the late Quaternary was investigated and sampled. Based on the field investigation and remote sensing image, the distribution map of moraine at different levels near the ridge of the upper reaches of the Bailang river was obtained.

0 2020-07-30

Geodetic glacier-averaged mass changes in the Mt.Xixabangma area in 1974-2000 and 2000-2017 (V1.0)

The data set involved geodetic annual glacier-averaged mass balance and mass change data atMt.Xixiabangma areasin the Himalayas from 1974 to 2017. It is stored in the ESRI vector polygon format and is composed of two periods, which includes surface elevation difference between 1974-2000 (DH1974-2000, from KH-9 DEM1974 and SRTM DEM2000), surface elevation difference between 2000-2017(DH2000-2017, by DinSAR techniquesfrom SRTM DEM2000 and TSX/TDX data in 2017). KH-9 DEM is a DEM of the study area in 1974, which was generated from three scenes of optical stereo pairs from KH-9. Geodetic glacier mass change was calculated by DH above, glacier cover vector data from TPG1976/CGI2/RGI6.0 with ice density of 850 ± 60 kg m−3. The attribute data included: GLIMSId means the glacier code from GLIMS data base, Area(km2)is the glacier area by km2, area_m2 is glacier area by (m2), the glacier name, EC74_2000, the surface elevation change rate from 1974 to 2000(m a-1), EC00_2017, the surface elevation change rate from 2000 to 2017 (m a-1), MB74_2000, the geodetic glacier mass balance between 1974 and 2000(m w.e. a-1),MB00_2017, the geodetic glacier mass balance between 2000 and 2017(m w.e. a-1).MC74_2000, the geodetic glacier mass change from 1974 to 2000 (m3w.e. a-1), MC00_2017, the geodetic glacier mass change from 2000 to 2017(m3 w.e. a-1). Ut_EC74_00 is the uncertainty of glacier surface elevation change(m a-1) in 1974-2000、Ut_MB74_00, is the uncertainty of glacier mass balance for each glacier(m w.e. a-1)in 1974-2000,Ut_MC74_00, is the uncertainty of glacier mass change for each glacier(m3w.e. a-1)in 1974-2000. Ut_EC00_17,is the uncertainty of glacier surface elevation change in 2000-2017(m a-1),Ut_MB00_17,is the uncertainty of glacier mass balance for each glacier in 2000-2017(m w.e. a-1),Ut_MC00_17 is the uncertainty of glacier mass change for each glacier in 2000-2017(m3 w.e. a-1).This data set is used for the study glaciers melting and its hydrological effects in the Central Himalayas.It also could be used in studies of climatic change and disasters research in the Himalayas.

0 2020-07-22

Geodetic glacier mass changes in Ponkar area in 1974-2000 and 2000-2014 (V1.0)

The data set involved geodetic annual glacier-averagedmass balance and mass change data at the Ponkar area in Nepal on the Southern slope of the Himalayas from 1974 to 2014. It is stored in the ESRI vector polygon format and is composed of two periods, which includes surface elevation difference between 1974-2000 (DH1974-2000, from KH-9 DEM1974 and SRTM DEM2000), surface elevation difference between 2000-2014 (DH2000-2014,by DinSAR techniques from SRTM DEM2000 and TSX/TDX data in 2014). KH-9 DEM is a DEM of the study area in 1974, which was generated from three scenes of optical stereo pairs from KH-9. Geodetic glacier mass change was calculated by DH above, glacier cover vector data from TPG1976/CGI2/RGI6.0 with ice density of 850 ± 60 kg m−3. The attribute data included: GLIMSId means the glacier code from GLIMS data base, the glacier_area(m2)、Area(km2), the glacier name, EC74_2000, the surface elevation change rate from 1974 to 2000(m a-1), EC00_2014, the surface elevation change rate from 2000 to 2014 (m a-1), MB74_2000, the geodetic glacier mass balance between 1974 and 2000(m w.e. a-1),MB00_2014, the geodetic glacier mass balance between 2000 and 2014(m w.e. a-1).MC74_2000, the geodetic glacier mass change from 1974 to 2000 (m3w.e. a-1), MC00_2014, the geodetic glacier mass change from 2000 to 2014(m3w.e. a-1). Ut_EC74_00 is the uncertainty of glacier surface elevation change(m a-1) in 1974-2000、Ut_MB74_00, is the uncertainty of glacier mass balance for each glacier(m w.e. a-1)in 1974-2000,Ut_MC74_00, is the uncertainty of glacier mass change for each glacier(m3w.e. a-1)in 1974-2000. Ut_EC00_14,is the uncertainty of glacier surface elevation change in 2000-2014(m a-1),Ut_MB00_14,is the uncertainty of glacier mass balance for each glacier in 2000-2014(m w.e. a-1),Ut_MC00_14 is the uncertainty of glacier mass change for each glacier in 2000-2014(m3 w.e. a-1). This data set is used for the study glaciers melting and its hydrological effects in Ponkar area in Nepal in the Southern slope of the Himalayas. It also could be used in studies of climatic change and disasters research in the Himalayas.

0 2020-07-22

Glacier mass storage changes of 71 pieces of glaciers in the east section of Yigongzangbu, Southeast Tibetan Plateau in 2000-2014

The data involved geodetic glacier mass change of 71pieces of glaciers during 2000-2014 in the east of the Yigongzangbu, Southeast Tibetan Plateau. It is stored in the ESRI vector polygon format.Glacier-averaged mass balance (m w.e.a-1) was calculated by the surface elevation difference between 2000-2014 ( Dh2000-2014)、glacier coveraged vector data (CGI2/TPG1976/RGI6.0) and ice density of 850 ± 60 kg m−3. Dh2000-2014 is obtained from surface elevation change by D-InSAR technique from a pair of TSX / TDx SAR images on February 7, 2014 and SRTM DEM. CGI2/TPG1976/RGI6.0 were used to extract glacier boundary and GLIMS-ID. SRTM DEM is the reference DEM and datum DEM with spatial resolution 30m. The attribute data includes GLIMS-ID, Area,EC_m_a-1,,MB_m w.e.a-1, MC_m3 w.e.a-1, MC_Gt.a-1, Uncerty_EC, Uncerty_MB, UT_MCm3w.e. a-1. Respectively, EC_m_a-1,,is the glacier-averaged annual elevation change during 2000-2014(m a-1),MB_m w.e.a-1, is glacier-averaged annual mass balance during 2000-2014(m w.e.a-1), MC_m3 w.e.a-1, is glacier-averaged annual mass change during 2000-2014 (m3 w.e.a-1), MC_Gt.a-1,is glacier-averaged annual mass change during 2000-2014 (Gt.a-1)Uncerty_EC is the uncertainty of glacier surface elevation change(±m a-1)、Uncerty_MB ,is the uncertainty of glacier mass balance(±m w.e. a-1),UT_MCm3w.e. a-1, is the uncertainty of glacier mass change(±m3w.e. a-1)。The data sets could be used for glacier change, hydrological and climate change studies in the southeast of Tibetan Plateau.

0 2020-07-21