Different glacier status with atmospheric circulations in Tibetan Plateau and surroundings (1970s-2000s)

This data set is collected from the supplementary information part of the paper: Yao, T. , Thompson, L. , & Yang, W. . (2012). Different glacier status with atmospheric circulations in tibetan plateau and surroundings. Nature Climate Change, 1580, 1-5. This paper report on the glacier status over the past 30 years by investigating the glacial retreat of 82 glaciers, area reductionof 7,090 glaciers and mass-balance change of 15 glaciers. This data set contains 8 tables, the names and content are as follows: Data list: The data name list of the rest tables; t1: Distribution of Glaciers in the TP and surroundings; t2: Data and method for analyzing glacial area reduction in each basin; t3: Glacial area reduction during the past three decades from remote sensing images in the TP and surroundings; t4: Glacial length fluctuationin the TP and surroundings in the past three decades; t5: Detailed information on the glaciers for recent mass balance measurement in the TP and surroundings; t6: Recent annual mass balances in different regions in the TP; t7: Mass balance of Long-time series for the Qiyi, Xiaodongkemadi and Kangwure Glaciers in the TP. See attachments for data details: Supplementary information.pdf, Different glacier status with atmospheric circulations in Tibetan Plateau and surroundings.pdf.

0 2020-10-09

Geodetic glacier-averaged mass changes in the Mt.Xixabangma area in 1974-2000 and 2000-2017 (V1.0)

The data set involved geodetic annual glacier-averaged mass balance and mass change data atMt.Xixiabangma areasin the Himalayas from 1974 to 2017. It is stored in the ESRI vector polygon format and is composed of two periods, which includes surface elevation difference between 1974-2000 (DH1974-2000, from KH-9 DEM1974 and SRTM DEM2000), surface elevation difference between 2000-2017(DH2000-2017, by DinSAR techniquesfrom SRTM DEM2000 and TSX/TDX data in 2017). KH-9 DEM is a DEM of the study area in 1974, which was generated from three scenes of optical stereo pairs from KH-9. Geodetic glacier mass change was calculated by DH above, glacier cover vector data from TPG1976/CGI2/RGI6.0 with ice density of 850 ± 60 kg m−3. The attribute data included: GLIMSId means the glacier code from GLIMS data base, Area(km2)is the glacier area by km2, area_m2 is glacier area by (m2), the glacier name, EC74_2000, the surface elevation change rate from 1974 to 2000(m a-1), EC00_2017, the surface elevation change rate from 2000 to 2017 (m a-1), MB74_2000, the geodetic glacier mass balance between 1974 and 2000(m w.e. a-1),MB00_2017, the geodetic glacier mass balance between 2000 and 2017(m w.e. a-1).MC74_2000, the geodetic glacier mass change from 1974 to 2000 (m3w.e. a-1), MC00_2017, the geodetic glacier mass change from 2000 to 2017(m3 w.e. a-1). Ut_EC74_00 is the uncertainty of glacier surface elevation change(m a-1) in 1974-2000、Ut_MB74_00, is the uncertainty of glacier mass balance for each glacier(m w.e. a-1)in 1974-2000,Ut_MC74_00, is the uncertainty of glacier mass change for each glacier(m3w.e. a-1)in 1974-2000. Ut_EC00_17,is the uncertainty of glacier surface elevation change in 2000-2017(m a-1),Ut_MB00_17,is the uncertainty of glacier mass balance for each glacier in 2000-2017(m w.e. a-1),Ut_MC00_17 is the uncertainty of glacier mass change for each glacier in 2000-2017(m3 w.e. a-1).This data set is used for the study glaciers melting and its hydrological effects in the Central Himalayas.It also could be used in studies of climatic change and disasters research in the Himalayas.

0 2020-07-22

Geodetic glacier mass changes in Ponkar area in 1974-2000 and 2000-2014 (V1.0)

The data set involved geodetic annual glacier-averagedmass balance and mass change data at the Ponkar area in Nepal on the Southern slope of the Himalayas from 1974 to 2014. It is stored in the ESRI vector polygon format and is composed of two periods, which includes surface elevation difference between 1974-2000 (DH1974-2000, from KH-9 DEM1974 and SRTM DEM2000), surface elevation difference between 2000-2014 (DH2000-2014,by DinSAR techniques from SRTM DEM2000 and TSX/TDX data in 2014). KH-9 DEM is a DEM of the study area in 1974, which was generated from three scenes of optical stereo pairs from KH-9. Geodetic glacier mass change was calculated by DH above, glacier cover vector data from TPG1976/CGI2/RGI6.0 with ice density of 850 ± 60 kg m−3. The attribute data included: GLIMSId means the glacier code from GLIMS data base, the glacier_area(m2)、Area(km2), the glacier name, EC74_2000, the surface elevation change rate from 1974 to 2000(m a-1), EC00_2014, the surface elevation change rate from 2000 to 2014 (m a-1), MB74_2000, the geodetic glacier mass balance between 1974 and 2000(m w.e. a-1),MB00_2014, the geodetic glacier mass balance between 2000 and 2014(m w.e. a-1).MC74_2000, the geodetic glacier mass change from 1974 to 2000 (m3w.e. a-1), MC00_2014, the geodetic glacier mass change from 2000 to 2014(m3w.e. a-1). Ut_EC74_00 is the uncertainty of glacier surface elevation change(m a-1) in 1974-2000、Ut_MB74_00, is the uncertainty of glacier mass balance for each glacier(m w.e. a-1)in 1974-2000,Ut_MC74_00, is the uncertainty of glacier mass change for each glacier(m3w.e. a-1)in 1974-2000. Ut_EC00_14,is the uncertainty of glacier surface elevation change in 2000-2014(m a-1),Ut_MB00_14,is the uncertainty of glacier mass balance for each glacier in 2000-2014(m w.e. a-1),Ut_MC00_14 is the uncertainty of glacier mass change for each glacier in 2000-2014(m3 w.e. a-1). This data set is used for the study glaciers melting and its hydrological effects in Ponkar area in Nepal in the Southern slope of the Himalayas. It also could be used in studies of climatic change and disasters research in the Himalayas.

0 2020-07-22

Glacier mass storage changes of 71 pieces of glaciers in the east section of Yigongzangbu, Southeast Tibetan Plateau in 2000-2014

The data involved geodetic glacier mass change of 71pieces of glaciers during 2000-2014 in the east of the Yigongzangbu, Southeast Tibetan Plateau. It is stored in the ESRI vector polygon format.Glacier-averaged mass balance (m w.e.a-1) was calculated by the surface elevation difference between 2000-2014 ( Dh2000-2014)、glacier coveraged vector data (CGI2/TPG1976/RGI6.0) and ice density of 850 ± 60 kg m−3. Dh2000-2014 is obtained from surface elevation change by D-InSAR technique from a pair of TSX / TDx SAR images on February 7, 2014 and SRTM DEM. CGI2/TPG1976/RGI6.0 were used to extract glacier boundary and GLIMS-ID. SRTM DEM is the reference DEM and datum DEM with spatial resolution 30m. The attribute data includes GLIMS-ID, Area,EC_m_a-1,,MB_m w.e.a-1, MC_m3 w.e.a-1, MC_Gt.a-1, Uncerty_EC, Uncerty_MB, UT_MCm3w.e. a-1. Respectively, EC_m_a-1,,is the glacier-averaged annual elevation change during 2000-2014(m a-1),MB_m w.e.a-1, is glacier-averaged annual mass balance during 2000-2014(m w.e.a-1), MC_m3 w.e.a-1, is glacier-averaged annual mass change during 2000-2014 (m3 w.e.a-1), MC_Gt.a-1,is glacier-averaged annual mass change during 2000-2014 (Gt.a-1)Uncerty_EC is the uncertainty of glacier surface elevation change(±m a-1)、Uncerty_MB ,is the uncertainty of glacier mass balance(±m w.e. a-1),UT_MCm3w.e. a-1, is the uncertainty of glacier mass change(±m3w.e. a-1)。The data sets could be used for glacier change, hydrological and climate change studies in the southeast of Tibetan Plateau.

0 2020-07-22

Geodetic Glacier mass changes in Naimo'Nanyi area in 1974-2000 and 2000-2013 (V1.0)

The data involved two periods of geodetic glacier mass storage change of Naimona’Nyi glaciers in the western of Himalaya from 1974-2013 (unit: m w.e. a-1). It is stored in the ESRI vector polygon format. The data sets are composed of two periods of glacier surface elevation difference between 1974-2000 and 2000-2013, i.e. DHSRTM2000-DEM1974(DH2000-1974)、DHTanDEM2013-SRTM2000(DH2013-2000). DH2000-1974 was surface elevation change between SRTM2000 and DEM1974, i.e. the earlier historical DEM (DEM1974, spatial resolution 25m) was derived from 1:50,000 topographic maps in October 1974(DEM1974,spatial resolution 25m). The uncertainty in the ice free areas of DH2000-1974 was ±0.13 m a-1. The surface elevation difference between 2000-2013 (DH2000-2013, by DinSAR techniques from SRTM DEM2000 and TSX/TDX data on Oct.17th in 2013) The uncertainty in the ice free areas of DH2013-2000 was ±0.04 m a-1. Glacier-averaged annual mass balance change (m w.e.a-1) was averaged annually for each glacier, which was calculated by DH2000-1974/DH2013-2000, glacier coverage area and ice density of 850 ± 60 kg m−3. The attribute data includes Glacier area by Shape_Area (m2), EC74_00, EC00_13, i.e. Glacier-averaged surface elevation change in 1974-2000 and 2000-2013(m a-1), MB74_00, MB00_13 i.e. Glacier-averaged annual mass balance in 1974-2000 and 2000-2013 (m w.e.a-1), and MC74_00, MC00_13, Glacier-averaged annual mass change in 1974-2000 and 2000-2013 (m3 w.e.a-1), Uncerty_MB, is the uncertainty of glacier-averaged annual mass balance(m w.e. a-1), Uncerty_MC, is the Maximum uncertainty of glacier-averaged annual mass change(m3 w.e. a-1). The data sets could be used for glacier change, hydrological and climate change studies in the Himalayas and High Mountain Asia.

0 2020-07-22

Reconstruction data set of mass balance of seven glaciers in Qinghai Tibet Plateau (1975-2013)

The data set includes the mass balances of Hailuogou Glacier, Parlung No.94 Glacier, Qiyi glacier, Xiaodongkemadi Glacier, Muztagh No.15 Glacier, Meikuang Glacier and NM551 Glacier in the Qinghai Tibet Plateau from 1975 to 2013. Based on several mass balance observations collected from World Glacier Inventory (https://nsidc.org/data/g10002/versions/1) and The Third Pole Environment Database (http://en.tpedatabase.cn/, doi:10.11888/GlaciologyGeocryology.tpe.96.db) by Tandong Yao and the meteorological data obtained from Global Land Assimilation System (GLDAS), the mass balances of the above seven glaciers from 1975 to 2013 are reconstructed by using the glacier material balance calculation formula. This reconstruction data is based on the published glacier material balance data to calibrate the parameters in the glacier material balance formula, and to reconstruct the long-time series material balance by using the glacier material balance formula, in which the parameter calibration results and the reconstruction results of the long-time series data are compared with the relevant research results, demonstrating the rationality of the data results Please refer to the following papers. The data can be used to study the change of water resources in the glacial region, expand the data set of Glacier Mass Balance in the Qinghai Tibet Plateau, and provide reference for the future research of Glacier Mass Balance reconstruction.

0 2020-06-30

The data of project on the impact of climate and glacier evolution on resources and sustainable development in Lijiang Yulong Snow Mountain Region

Impact of Climate and Glacier Evolution in Southwest Monsoon Region on Resources and Sustainable Development in Lijiang-Yulong Snow Mountain Region Project is a major research program of "Environmental and Ecological Science in Western China" sponsored by the National Natural Science Foundation. The person in charge is a researcher from He Yuanqing, Institute of Environment and Engineering in Cold and Arid Regions, Chinese Academy of Sciences. The project runs from January 2004 to December 2006. This project collects data: the data of Yulong Snow Mountain Glacier and Environment Observation and Research Station are compiled in word document, and the data content includes: 1. Material Balance of Baishui Glacier No.1 from September to December 2008 (Profile, Lever, Accumulation and Dissipation) 2.Changes of Baishui Glacier No.1 in Yulong Snow Mountain from 1997 to 2008 (date, end elevation, end advancing and retreating distance, south advancing and retreating distance) 3. Monthly Average Flow Statistics of Mujia Station from 1979 to 2003 (Annual Average Flow, Annual Maximum Flow, Annual Maximum Time, Annual Minimum Flow, and Annual Minimum Time) 4. Meteorological data of the test station of Yulong Snow Mountain Glacier Observation Room From 2000 to 2008, the daily average temperature (℃), daily precipitation (mm), daily average relative humidity, daily average sunshine hours, daily air pressure value and daily average wind speed of the base camp weather station. From 2006 to 2008, Ganhaizi Meteorological Station daily average temperature (℃), daily precipitation (mm), daily average relative humidity, daily average sunshine hours, daily air pressure value and daily average wind speed In 2008, the day-to-day average temperature table (℃), day-to-day precipitation (mm), day-to-day average relative humidity, day-to-day average sunshine hours, day-to-day air pressure value and day-to-day average wind speed in the Baishui No.1 glacier accumulation area of Yulong Snow Mountain. In 2008, the day-to-day average temperature table (℃), day-to-day precipitation (mm), day-to-day average relative humidity, day-to-day average sunshine hours, day-to-day air pressure, and day-to-day average wind speed at the end of glacier Baishui No.1 in Yulong Snow Mountain were recorded. Dew point temperature of Ganhaizi from 2006 to 2008 Daily average CO2 content (ppm) at Ganhaizi Meteorological Station from 2006 to 2007 Air Water Vapor Pressure (kPa) at Glacier Terminal Meteorological Station Air Water Vapor Pressure (kPa) of Meteorological Station in Glacier Accumulation Area 5. glacier ice Temperature Data of Baishui No.1, Yulong Snow Mountain Measured resistance values of ice temperature holes at measuring points 1, 2 and 3

0 2020-06-10

Dataset of mass balance on the Laohugou Glacier No. 12, western Qilian Mountains (2014-2018)

1) Dataset: The dataset includes mass balance data during 2010-2015 on the Laohuogou Glacier No. 12. 2) Sourc and methods: the mass balances were measured at each 100 m elevation belt, and every elevation had installed three plastic stick to measure mass balance. The mass balance of entire glacier was mesrued in May and September, the glacier-wide mass balance was calculated following met Area-Average method. 3) Data quality dsecription: data were manually measured following glaciology method, with a good quality.

0 2020-05-15

The third polar area glacier surface elevation change data product v1.0

The recent glacial changes in the third polar region have become the focus of the governments of the surrounding countries because of their important significance to the downstream water supply. Based on SRTM acquired in 2000 and aster stereo image pairs before and after 2015, more than 40 Typical Glaciers in the third polar region were selected to estimate the glacial surface elevation in corresponding period. This product estimates the surface elevation changes of more than 14000 glaciers in the third polar region in 2000-2015s, and the investigated area accounts for about 25% of the total glaciers in the third polar region. The data covers the whole third pole area except Altai mountain, with a spatial resolution of 30m.

0 2020-04-30

Dataset of typical glacier changes on Tibetan Plateau and Its surrounding areas (2005-2016)

This is the data set of typical glacier changes on the Tibetan Plateau and its surrounding areas, which includes the Qiangyong Glacier near Yamdrog Yumtso, the Palong Glacier in the Palongzangbu River Basin, the Xiaodongkemadi Glacier on Tanggula Mountain in the central Tibetan Plateau, the No. 2 Anglong Glacier in the Ngari Prefecture in the western Tibetan Plateau, the Aerqieteke Glacier in the Muztagata region, the No. 15 Glacier, the Qiaodumake Glacier, and the Qiyi Glacier in the Qilian Mountains on the northeastern Tibetan Plateau. It can be used to study the response of typical glaciers in typical areas of the plateau to climate change. On the ice surface of a typical glacier in a typical area, a steam drill is used to set a length rod. The height of the rod is measured at a fixed time every year and combined with snow pit observations to observe the glacier mass balance. Marks are set on the ground near the terminus of the glacier, and the distance between the marker and the terminus of the glacier is measured to observe changes in the position of the terminus of the glacier. Among the glaciers, there are terminus change data for the Qiaodumake Glacier and No. 94 Palong Glacier. In the data set processing method, a continuous sequence of time and space is formed after the quality control of the original data. It conforms to the accuracy of conventional glacier monitoring and research in China and the world, and it meets the requirements of the comparative study of glacier changes and related climate change records.

0 2019-09-16