Spatial distribution of global mean annual temperature simulated by multi-model ensemble under different climate scenarios (2006-2100)

According to the data of three future scenarios of CMIP5 (RCP2.6、RCP4.5、RCP8.5), the spatial variation characteristics and temporal variation trend of the global mean annual air temperature from 2006 to 2100 are analyzed. Under rcp2.6 scenario, the mean annual air temperature shows an increasing trend, with the growth rate ranging from 0.0 ° c/decade to 0.2 ° c/decade (P<0.05), the growth in high latitude regions is faster, ranging from 0.1 ° c/decade to 0.2 ° C / decade. Based on the spatial and temporal characteristics of the mean annual air temperature in the northern hemisphere in the 21st century, under different scenarios, the mean annual air temperature shows a warming trend, and the high latitudes show a more sensitive and rapid growth.

0 2022-10-23

Data of aerosol types in the three polar region V2.0 (2006-2021)

The triple pole aerosol type data product is an aerosol type result obtained through a series of data pre-processing, quality control, statistical analysis and comparative analysis processes by comprehensively using MEERA 2 assimilation data and active satellite CALIPSO products. The key of the aerosol type fusion algorithm is to judge the aerosol type of CALIPSO. During the data fusion of aerosol type, the final aerosol type data (12 types in total) and quality control results in the three polar regions are obtained according to the types and quality control of CALIPSO aerosol types and referring to MERRA 2 aerosol types. The data product fully considers the vertical and spatial distribution of aerosols, and has a high spatial resolution (0.625 ° × 0.5 °) and time resolution (month).

0 2022-10-20

Land surface temperature in the Qinghai-Tibet engineering corridor (2010-2018)

The Qinghai-Tibet Engineering Corridor runs from Golmud to Lhasa. It passes through the core region of the Qinghai-Tibet Plateau and is an important passage connecting the interior and Tibet. As the primary parameter in the surface energy balance, the land surface temperature represents the degree of energy and water exchange between the earth and the atmosphere, and is widely used in the research of climatology, hydrology and ecology. The annual average surface land temperature is obtained by using the four day and night observations of Aqua and Terra. Therefore, the 8-day land surface temperature synthesis products MOD11A2 and MYD11A2 with a resolution of 1km were downloaded first, and then the data were batch projected by MRT (MODIS Reprojection Tool). Finally, the annual average MODIS land surface temperature data after 2010 was calculated by IDL.

0 2022-09-25

2015-2100 global climate dataset considering different SSPs scenarios of China's carbon neutral targets

The data set is a numerical simulation data set based on CESM2.1.3 mode. The data set is global multi scenario monthly climate data. The spatial resolution is f19_ G17 atmosphere/land is 1.9x2.5 degrees, from January 2015 to December 2010, and the data is in NETCDF format. The data set includes historical data from 1850-2014 (referred to as Hist for short) and SSP scenarios (SSP126, SSP245, SSP370, SSP585). Each scenario includes three sets of climate data (default emission data CMIP6 (referred to as CMIP6 for short), China's carbon neutral CNCN (referred to as CNCN for short) CO2 emissions, and China's CH4 and N2O changes with CNCN, which are further used to drive the CESM (referred to as CNCNext for short)), The data set contains a geospatial range of - 90 ° N – 90 ° N and - 180 ° E – 180 ° E.

0 2022-09-20

Northern and Southern Annular Mode indices 1500-2000

(1) Data content: the annual mean Northern Annular mode index and the Northern Annular mode index from 1500 to 2000; (2) Data source and processing method: this data is independently produced by the author. It is based on PAGES2k data set and reconstructed by machine learning model (random forest, extreme tree, Light GBM and catboost). (3) Data quality description: the data set has high consistency with multiple instrumental data during the observed period, and the reconstruction is better. The data can be used to study the change and mechanism of the main atmospheric circulation in the northern and southern hemispheres on multiple time scales (interannual, interdecadal and multidecadal).

0 2022-08-30

Near surface atmospheric oxygen content data of Qinghai Tibet Plateau (2017-2021)

1. The total number is the unified number of the survey year, such as 17-001 (the first survey point in 2017), and the field number is the single field number. 2. Time: Beijing time at the time of measurement, such as: 13:25, August 1, 2017 (13:25, August 1, 2017). 3. Geographical location: the longitude and latitude of the measuring point, such as 29.6584101.0884 (29.6584 ° n, 101.0884 ° E), which is measured by Garmin 63sc GPS in the field. 4. Altitude: the absolute altitude of the measuring point, such as 4500m (4500m above sea level), is measured by Garmin 63sc GPS in the field with an accuracy of 1m. 5. Measured vegetation coverage (%): measured in the field with quadrat (1000 m * 1000 m). 6. Atmospheric pressure: measured by dph-103 intelligent digital temperature and humidity barometer in the field, such as 651.7kpa, accuracy: 0.1 kPa. 7. Air temperature: measured by dph-103 intelligent digital temperature, humidity and barometer in the field, such as 15.61 ℃, accuracy: 0.01 ℃. 8. Relative humidity: measured by dph-103 intelligent digital temperature, humidity and barometer in the field, such as 79.1%, accuracy: 0.1%. 9. Relative oxygen content: measured by td400-sh-o2 portable oxygen detector in the field, such as 20.16%, accuracy: 0.01%. Among them, the altitude of sampling points 17-001 to 17-065 is measured by Garmin Oregon 450 GPS with an accuracy of 1 m; The atmospheric pressure is measured by Casio prg-130gc barometer with an accuracy of 5 HPA; The relative oxygen content is measured by cy-12c digital oxygen meter, with a range of 0-50.0%, a resolution of 0.1% and an accuracy of ± 1%.

0 2022-06-06