Tibetan soil carbon pool to 3 m depth (2019)

This dataset is derived from the paper: Ding, J., Wang, T., Piao, S., Smith, P., Zhang, G., Yan, Z., Ren, S., Liu, D., Wang, S., Chen, S., Dai, F., He, J., Li, Y., Liu, Y., Mao, J., Arain, A., Tian, H., Shi, X., Yang, Y., Zeng, N., & Zhao, L. (2019). The paleoclimatic footprint in the soil carbon stock of the Tibetan permafrost region. Nature Communications, 10(1), 4195. doi:10.1038/s41467-019-12214-5. This data contains R code and a new estimate of Tibetan soil carbon pool to 3 m depth, at a 0.1° spatial resolution. Previous assessments of the Tibetan soil carbon pools have relied on a collection of predictors based only on modern climate and remote sensing-based vegetation features. Here, researchers have merged modern climate and remote sensing-based methods common in previous estimates, with paleoclimate, landform and soil geochemical properties in multiple machine learning algorithms, to make a new estimate of the permafrost soil carbon pool to 3 m depth over the Tibetan Plateau, and find that the stock (38.9-34.2 Pg C) is triple that predicted by ecosystem models (11.5 ± 4.2 Pg C), which use pre-industrial climate to initialize the soil carbon pool. This study provides evidence that illustrates, for the first time, the bias caused by the lack of paleoclimate information in ecosystem models. The data contains the following fields: Longitude (°E) Latitude (°N) SOCD (0-30cm) (kg C m-2) SOCD (0-300cm) (kg C m-2) GridArea (k㎡) 3mCstcok (10^6 kg C)

0 2020-09-09

Genome Assembly of Alpine Species Salix Brachista on the Tibetan Plateau (2019)

This dataset is collected from the paper: Chen, J.*#, Huang, Y.*#, Brachi, B.*#, Yun, Q.*#, Zhang, W., Lu, W., Li, H., Li, W., Sun, X., Wang, G., He, J., Zhou, Z., Chen, K., Ji, Y., Shi, M., Sun, W., Yang, Y.*, Zhang, R.#, Abbott, R. J.*, & Sun, H.* (2019). Genome-wide analysis of Cushion willow provides insights into alpine plant divergence in a biodiversity hotspot. Nature Communications, 10(1), 5230. doi:10.1038/s41467-019-13128-y. This data contains the genome assembly of alpine species Salix brachista on the Tibetan Plateau, it contains DNA, RNA, Protein files in Fasta format and the annotation file in gff format. Assembly Level: Draft genome in chromosome level Genome Representation: Full Genome Reference Genome: yes Assembly method: SMARTdenovo 1.0; CANU 1.3 Sequencing & coverage: PacBio 125.0; Illumina Hiseq X Ten 43.0; Oxford Nanopore Technologies 74.0 Statistics of Genome Assembly: Genome size (bp): 339,587,529 GC content: 34.15% Chromosomes sequence No.: 19 Organellas sequence No.: 2 Genome sequence No.: 30 Maximum genome sequence length (bp): 39,688,537 Minimum genome sequence length (bp): 57,080 Average genome sequence length (bp): 11,319,584 Genome sequence N50 (bp): 17,922,059 Genome sequence N90 (bp): 13,388,179 Annotation of Whole Genome Assembly: Protein:30,209 tRNA:784 rRNA:118 ncRNA:671 Please see attachments for more details of annotation. The tables in the Supplementary Information of this article can also be found in this dataset. The table list is represented in attachments. The accession no. of genome assembly is GWHAAZH00000000 (https://bigd.big.ac.cn/gwh/Assembly/663/show).

0 2020-09-07

South Asia meteorological data set: meteorological data of Kathmandu center for research and education,CAS-TU (2019)

1) This data includes the basic meteorological data of Kathmandu center for research and education,CAS-TU in 2019; the parameters are: temperature ℃, relative humidity%, atmospheric pressure kPa, precipitation mm, radiation w / m2, wind speed M / s. Table 2 is a description of the weather station, including the geographical location and underlying surface. 2) Data sources and processing methods: the data are from the hourly data of Kathmandu science and education center, Chinese Academy of Sciences, daily average of temperature, air pressure, radiation and wind speed, and daily sum of rainfall. 3) Data quality description: among these parameters, the quality of air pressure data is poor, and there are many missing data due to instrument failure from June to August in 2019 4) Compared with the data of different regions in South Asia, the meteorological data can be used for postgraduates and scientists with atmospheric science, hydrology, climatology, physical geography and ecology.

0 2020-08-06