Multiyear in-situ L-band microwave radiometry of land surface processes on the Tibetan Plateau (2016-2019)

This dataset contains measurements of L-band brightness temperature by an ELBARA-III microwave radiometer in horizontal and vertical polarization, profile soil moisture and soil temperature, turbulent heat fluxes, and meteorological data from the beginning of 2016 till August 2019, while the experiment is still continuing. Auxiliary vegetation and soil texture information collected in dedicated campaigns are also reported. This dataset can be used to validate the Soil Moisture and Ocean Salinity (SMOS) and Soil Moisture Active Passive (SMAP) satellite based observations and retrievals, verify radiative transfer model assumptions and validate land surface model and reanalysis outputs, retrieve soil properties, as well as to quantify land-atmosphere exchanges of energy, water and carbon and help to reduce discrepancies and uncertainties in current Earth System Models (ESM) parameterizations. ELBARA-III horizontal and vertical brightness temperature are computed from measured radiometer voltages and calibrated internal noise temperatures. The data is reliable, and its quality is evaluated by 1) Perform ‘histogram test’ on the voltage samples (raw-data) of the detector output at sampling frequency of 800 Hz. Statistics of the histogram test showed no non-Gaussian Radio Frequency Interference (RFI) were found when ELBAR-III was operated. 2) Check the voltages at the antenna ports measured during sky measurements. Results showed close values. 3) Check the instrument internal temperature, active cold source temperature and ambient temperature. 3) Analysis the angular behaviour of the processed brightness temperatures. -Temporal resolution: 30 minutes -Spatial resolution: incident angle of observation ranges from 40° to 70° in step of 5°. The area of footprint ranges between 3.31 m^2 and 43.64 m^2 -Accuracy of Measurement: Brightness temperature, 1 K; Soil moisture, 0.001 m^3 m^-3; Soil temperature, 0.1 °C -Unit: Brightness temperature, K; Soil moisture, m^3 m^-3; Soil temperature, °C/K

0 2020-10-24

HiWATER: Multi-scale observation experiment on land surface temperature-dataset of component temperature in the down of Heihe River Basin (Thermal infrared radiometer) (2014-2016)

This dataset includes component temperatures measured by the thermal infrared (TIR) radiometers at the Mixed Forest and Sidaoqiao stations between 22 July, 2014 and 19 July, 2016. The Mixed Forest (101.1335 °E, 41.9903 °N, 874 m.a.s.l.) and Sidaoqiao (101.1374 °E, 42.0012 °N, 873 m.a.s.l.) stations were located in the downstream of the Heihe River basin, Dalaihubu Town, Ejin Banner, Inner Mongolia. At the Mixed Forest station, two TIR radiometers (SI-111, Apogee Instruments Inc., USA) connected to a data logger (CR800, Campbell Scientific Inc., USA) measured component temperatures of the sunlit canopy and shaded canopy. TIR radiometers were mounted horizontally at 5 m height on iron rods just south and north of a tree and pointed to its canopy. The distance from the sensor to the canopy was ~1 m. At the Sidaoqiao station, two SI-111 TIR radiometers connected to a CR800 data logger measured component temperatures of the soil and shrub. The first sensor pointed from 2 m height under a viewing zenith angle of 45° to bare soil; the second sensor was mounted at 1-m height and pointed horizontally into the shrub canopy.

0 2020-10-13

HiWATER: MUlti-scale observation experiment on land surface temperature (MUSOES)- dataset of component temperature in the down of Heihe River Basin (Thermal imager)

This dataset includes component temperatures measured by the thermal imager at the Mixed Forest and Sidaoqiao stations between 23 July and 18 August, 2014. The Mixed Forest (101.1335 °E, 41.9903 °N, 874 m.a.s.l.) and Sidaoqiao (101.1374 °E, 42.0012 °N, 873 m.a.s.l.) stations were located in the downstream of the Heihe River basin, Dalaihubu Town, Ejin Banner, Inner Mongolia. At the Mixed Forest station, a Testo 890-2 thermal imager (Testo Inc., Germany) with a resolution of 640 × 480 pixels was employed to acquire brightness temperature images. The imager was manually operated from a 10-m height platform of the tower between 10:00-16:00 (China Standard Time, CST) with an observation interval of 1-h on cloudless days. On August 4th observations were acquired between 11:00 and 17:00 at an interval of 10-min to match observations acquired with an airborne TIR imager. The ground based imager was pointed to five viewing directions (southeast-SE, east-E, northeast-NE, northwest-NW, and southwest-SW) and was inclined 25°–45° below the horizon depending on viewing direction. At Sidaoqiao station, a Testo 875-2i imager (Testo Inc., Germany) with a resolution of 160 × 120 pixels was manually operated from a 10-m high platform to acquire brightness temperature images in directions SW, SE, NE, and NW. Depending on the targets in each viewing direction, the imager was inclined to 30°–45° below the horizon. Observations at Sidaoqiao and Mixed Forest stations were almost synchronous. Furthermore, visible images were taken simultaneously with the aforementioned two TIR imagers (2048 × 1536 pixels for Testo 890-2 and 640 × 480 pixels for Testo 875-2i).

0 2020-10-13

Aerosol optical property dataset of the Tibetan Plateau by ground-based observation (2009-2016)

The measurement data of the sun spectrophotometer can be directly used to perform inversion on the optical thickness of the non-water vapor channel, Rayleigh scattering, aerosol optical thickness, and moisture content of the atmospheric air column (using the measurement data at 936 nm of the water vapor channel). The aerosol optical property data set of the Tibetan Plateau by ground-based observations was obtained by adopting the Cimel 318 sun photometer, and both the Mt. Qomolangma and Namco stations were involved. The temporal coverage of the data is from 2009 to 2016, and the temporal resolution is one day. The sun photometer has eight observation channels from visible light to near infrared. The center wavelengths are 340, 380, 440, 500, 670, 870, 940 and 1120 nm. The field angle of the instrument is 1.2°, and the sun tracking accuracy is 0.1°. According to the direct solar radiation, the aerosol optical thickness of 6 bands can be obtained, and the estimated accuracy is 0.01 to 0.02. Finally, the AERONET unified inversion algorithm was used to obtain aerosol optical thickness, Angstrom index, particle size spectrum, single scattering albedo, phase function, birefringence index, asymmetry factor, etc.

0 2020-08-17

snow pit data in Altay (2015/2016)

Snow pits were observed daily at Altay base station(lon:88.07、lat: 44.73) from November 27, 2015 to March 26, 2016. Parameters include: snow stratification, stratification thickness, density, particle size, temperature. The frequency of observation was daily. The particle size was observed by a microscope with camera, the density was observed by snowfork, snow shovel and Snow Cone, and the temperature was automatically observed by temperature sensor. The observation time was 8:00-10:100 am local time. The snow particle size is observed according to the natural stratification of snow. The snow particles of each layer are collected, and at least 2 photos are taken. The long axis and short axis of at least 10 groups of particles are measured by corresponding software. Unit: mm. The density was observed at equal intervals, snowfork every 5 cm, snow shovel every 10 cm, snow cone to observe the density of the whole snow layer, and the density of each layer was observed three times. The unit is g / cm3. The height of temperature observation is 0cm, 5cm, 10cm, 15cm, 25cm, 35cm, 45cm, 55cm. The recording frequency was once every 1 minute. The unit is OC.

0 2020-07-06

HiWATER: Dataset of fractional vegetation cover over the midstream of Heihe River Basin (2012.05.25-09.14)

This dataset is the Fractional Vegetation Cover observation in the artificial oasis experimental region of the middle stream of the Heihe River Basin. The observations lasted for a vegetation growth cycle from May 2012 to September 2012 (UTC+8). Instruments and measurement method: Digital photography measurement is implemented to measure the FVC. Plot positions, photographic method and data processing method are dedicatedly designed. Details are described in the following: 0. In field measurements, a long stick with the camera mounted on one end is beneficial to conveniently measure various species of vegetation, enabling a larger area to be photographed with a smaller field of view. The stick can be used to change the camera height; a fixed-focus camera can be placed at the end of the instrument platform at the front end of the support bar, and the camera can be operated by remote control. 1. For row crop like corn, the plot is set to be 10×10 m2, and for the orchard, plot scale is 30×30 m2. Shoot 9 times along two perpendicularly crossed rectangular-belt transects. The picture generated of each time is used to calculate a FVC value. “True FVC” of the plot is then acquired as the average of these 9 FVC values. 2. The photographic method used depends on the species of vegetation and planting pattern: Low crops (<2 m) in rows in a situation with a small field of view (<30 ), rows of more than two cycles should be included in the field of view, and the side length of the image should be parallel to the row. If there are no more than two complete cycles, then information regarding row spacing and plant spacing are required. The FVC of the entire cycle, that is, the FVC of the quadrat, can be obtained from the number of rows included in the field of view. 3. High vegetation in rows (>2 m) Through the top-down photography of the low vegetation underneath the crown and the bottom-up photography beneath the tree crown, the FVC within the crown projection area can be obtained by weighting the FVC obtained from the two images. Next, the low vegetation between the trees is photographed, and the FVC that does not lie within the crown projection area is calculated. Finally, the average area of the tree crown is obtained using the tree crown projection method. The ratio of the crown projection area to the area outside the projection is calculated based on row spacing, and the FVC of the quadrat is obtained by weighting. 4. FVC extraction from the classification of digital images. Many methods are available to extract the FVC from digital images, and the degree of automation and the precision of identification are important factors that affect the efficiency of field measurements. This method, which is proposed by the authors, has the advantages of a simple algorithm, a high degree of automation and high precision, as well as ease of operation.

0 2020-06-19

Drone orthophoto image and DSM of Qinghai Hoh Xil plot (2018)

On August 22, 2018, a DJI camera was used in the fixed sample of Lancang River headwaters. The overlap degree of adjacent photos was not less than 70% according to the set flight route. The Orthophoto Image and DSM were generated using the photographs taken. The Orthophoto Image included three bands of red, green and blue, with a ground resolution of 2.5 cm, a shooting area of 1000m x 1000m and a DSM resolution of 4.5 cm. Due to the communication failure, the middle four airstrips were not photographed, so there was a band in the middle of the image missing.

0 2020-06-03

Drone photoes of Qumalai wetland plot (2018)

On August 19, 2018, the wetland sample in Qumali County, located in the source area of the Yangtze River, was aerially photographed by DJI Elf 4 UAV. A total of 31 routes were set up, flying at a height of 100 m, and the overlap of adjacent photographs was not less than 70%. A total of 1551 aerial photographs were obtained and stored in two folders named "Drone Photoes Part1" and "Drone Photoes Part2".

0 2020-06-03

Basic dataset of great lakes in Central Asia –mark dataset of remote sensing interpretation (2015)

The remote sensing image interpretation mark is also called the interpretation factor, which can directly reflect the image features of the ground object information. The interpreter uses these marks to identify the nature, type or condition of the feature or phenomenon on the image, so it is for the remote sensing image data. Human-computer interactive interpretation is of great significance. The image used in the data to establish the interpretation mark avoids the summer with high vegetation coverage, and avoids the data with more snow cover, cloud cover or smog influence.According to the basic geographic information data extraction requirements, the combination of the remote sensing image band combination order and the full color band are selected.Avoid data loss when enhancing data. The requirement for selecting a typical marker-building area on an image is that the range is moderate to reflect the typical features of the type of landform, including as many basic geographic information elements as possible in the type of landform and the image quality is good. After the selection of the marking area is completed, look for all the basic geographic information element categories contained in the marking area, and then select various typical maps as the collection marks, then go to the field for field verification,including 3429 sampling reference points and 1,870 photos, and the translation of the library was established, and the unreasonable parts were modified until they were consistent with the field. At the same time, the ground photo of the map is taken to make the image and the actual ground elements relate to each other, expressing the authenticity and intuitiveness of the remote sensing image interpretation mark, and to deepen the user's understanding of the interpretation mark.

0 2020-05-29

Aerial data of the Tibetan Plateau (2018)

The data set was acquired by uav aerial photography during the field investigation on the Tibetan Plateau in 2018. The data size was 5.72 GB, including more than 800 photos.The photo was taken from July 19, 2008 to July 26, 2008. The shooting locations mainly include yambajing, keshi village, apaixin village, zhongguo village, mirin village, ri village, chongkang village, kesong village, semi village, yamzhuo yoncho and the surrounding areas.Aerial photos more clearly reflect the local land cover, land use type distribution density, rivers and lakes, vegetation, etc.), work for land use remote sensing provides better validation information, can also be used for the estimation of vegetation coverage, for the study of land use in the study area provided a good reference information.

0 2020-05-29