Analysis data of plant carbon and nitrogen cycle (2019-2020)

The data were collected from the sample plot of Haibei Alpine Meadow Ecosystem Research Station (101°19′E,37°36′N,3250m above sea level), which is located in the east section of Lenglongling, the North Branch of Qilian Mountain in the northeast corner of Qinghai Tibet Plateau. Alpine meadow is the main vegetation type in this area. The data recorded the light, air temperature and humidity, wind temperature and wind speed above the alpine plant canopy. The radiation intensity above the alpine plant canopy was recorded by LI-190R photosynthetic effective radiation sensor (LI-COR, Lincoln NE, USA) and LR8515 data collector (Hioki E. E. Co., Nagano, Japan), and the recording interval was once per second. S580-EX temperature and humidity recorder (Shenzhen Huatu) and universal anemometer are used (Beijing Tianjianhuayi) record the daily dynamics of air temperature and humidity, wind temperature and wind speed every three seconds. The recording time is from 10:00 on July 13 to 21:00 on August 17, Beijing time. Due to the need to use USB storage time and replace the battery every day, 3-5min of data is missing every day, and the missing time period is not fixed. At present, the data has not been published. Through research on the data The data can further explore the microenvironment of alpine plant leaves and its possible impact on leaf physiological response.

0 2022-01-18

The desertification risk map of the Arabian Peninsula in 2020

The gridded desertification risk data of The Arabian Peninsula in 2021 was calculated based on the environmentally sensitive area index (ESAI) methodology. The ESAI approach incorporates soil, vegetation, climate and management quality and is one of the most widely used approaches for monitoring desertification risk. Based on the ESAI framework, fourteen indicators were chosen to consider four quality domains. Each quality index was calculated from several indicator parameters. The value of each parameter was categorized into several classes, the thresholds of which were determined according to previous studies. Then, sensitivity scores between 1 (lowest sensitivity) and 2 (highest sensitivity) were assigned to each class based on the importance of the class’ role in land sensitivity to desertification and the relationships of each class to the onset of the desertification process or irreversible degradation. A more comprehensive description of how the indicators are related to desertification risk and scores is provided in the studies of Kosmas (Kosmas et al., 2013; Kosmas et al., 1999). The main indicator datasets were acquired from the Harmonized World Soil Database of the Food and Agriculture Organization, Climate Change Initiative (CCI) land cover of the European Space Agency and NOAA’s Advanced Very High Resolution Radiometer (AVHRR) data. The raster datasets of all parameters were resampled to 500m and temporally assembled to the yearly values. Despite the difficulty of validating a composite index, two indirect validations of desertification risk were conducted according to the spatial and temporal comparison of ESAI values, including a quantitative analysis of the relationship between the ESAI and land use change between sparse vegetation and grasslands and a quantitative analysis of the relationship between the ESAI and net primary production (NPP). The verification results indicated that the desertification risk data is reliable in the Arabian Peninsula in 2021.

0 2021-12-12