Long time series ecological background map of Qinghai Tibet Plateau (1990-2015)

Based on the medium resolution long time series remote sensing image Landsat, the data set obtained six periods of ecosystem type distribution maps of the Qinghai Tibet Plateau in 1990 / 1995 / 2002 / 2005 / 2010 / 2015 through image fusion, remote sensing interpretation and data inversion, and made the original ecological base map of the Qinghai Tibet Plateau in 25 years (1990-2015). According to the area statistics of various ecosystems in the Qinghai Tibet Plateau, the area of woodland and grassland decreased slightly, the area of urban land, rural residential areas and other construction land increased, the area of rivers, lakes and other water bodies increased, and the area of permanent glacier snow decreased from 1990 to 2015. The atlas can be used for the planning, design and management of ecological projects in the Qinghai Tibet Plateau, and can be used as a benchmark for the current situation of the ecosystem, to clarify the temporal and spatial pattern of major ecological projects in the Qinghai Tibet Plateau, and to reveal the change rules and regional differences of the pattern and function of the ecosystem in the Qinghai Tibet Plateau.

0 2021-06-10

The desertification risk map of Iranian plateau in 2019

The gridded desertification risk data of Iranian plateau in 2019 was calculated based on the environmentally sensitive area index (ESAI) methodology. The ESAI approach incorporates soil, vegetation, climate and management quality and is one of the most widely used approaches for monitoring desertification risk. Based on the ESAI framework, fourteen indicators were chosen to consider four quality domains. Each quality index was calculated from several indicator parameters. The value of each parameter was categorized into several classes, the thresholds of which were determined according to previous studies. Then, sensitivity scores between 1 (lowest sensitivity) and 2 (highest sensitivity) were assigned to each class based on the importance of the class’ role in land sensitivity to desertification and the relationships of each class to the onset of the desertification process or irreversible degradation. A more comprehensive description of how the indicators are related to desertification risk and scores is provided in the studies of Kosmas (Kosmas et al., 2013; Kosmas et al., 1999). The main indicator datasets were acquired from the Harmonized World Soil Database of the Food and Agriculture Organization, Climate Change Initiative (CCI) land cover of the European Space Agency and NOAA’s Advanced Very High Resolution Radiometer (AVHRR) data. The raster datasets of all parameters were resampled to 500m and temporally assembled to the yearly values. Despite the difficulty of validating a composite index, two indirect validations of desertification risk were conducted according to the spatial and temporal comparison of ESAI values, including a quantitative analysis of the relationship between the ESAI and land use change between sparse vegetation and grasslands and a quantitative analysis of the relationship between the ESAI and net primary production (NPP). The verification results indicated that the desertification risk data is reliable in Iranian plateau in 2019.

0 2021-01-14

NDVI Dataset of Typical Stations in Midstream of Heihe River Basin Based on UAV Remote Sensing (2019, V1)

NDVI is a very important vegetation index for the research of vegetation growth and land cover classification. This dataset provides a monthly land surface albedo of UAV remote sensing with a spatial resolution of 0.2 m. It measured in the midstream of Heihe River Basin during the vegetation growth season over typical stations in 2019. The pix4D mapper software was used for image mosaic and NDVI calculation.

0 2020-07-31

Land Surface Albedo Dataset of Typical Stations in Middle Reaches of Heihe River Basin based on UAV Remote Sensing (2019, V1)

Surface albedo is a critical parameter in land surface energy balance. This dataset provides the monthly land surface albedo of UAV remote sensing for typical ground stations in the middle reaches of Heihe river basin during the vegetation growth stage in 2019. The algorithm for calculating albedo is an empirical method, which was developed based on a comprehensive forward simulation dataset based on 6S model and typical spectrums. This method can effectively transform the surface reflectance to the broadband surface albedo. The method was then applied to the surface reflectance acquired by UAV multi-spectral sensor and the broadband surface albedo with a 0.2-m spatial resolution was eventually obtained.

0 2020-07-16

HiWATER: Land cover map in the core experimental area of flux observation matrix

The dataset contains vegetation type in the middle reaches of the Heihe River Basin, which was used to validate products from remote sensing. It was generated from investigating the land cover strips of CASI during 2012. Instruments: High-precision handheld GPS (2-3 m) and digital camera were used as main tools in the survey. Measurement method: Hierarchical classification is applied based on CASI data. According to various land types, pixel classifications is used for forest, grassland, bare land and building lands; in-situ observations and investigations are used for different crops. Dataset contains: land types, including maize, leek, poplar trees, cauliflower, bell pepper, potatoes, endive sprout, orchard, watermelon, kidney bean, pear orchard, shadow, and non-vegetation, except for 14 others which are not classified. Observation site: core experimental areas with 5*5 matrix structure in the middle reaches of the Heihe river basin Date: From 25 June in 2012 (UTC+8) on.

0 2019-09-15

HiWATER: Vegetation Height product in the middle of the Heihe River Basin on July. 19, 2012

In July 19, 2012 (UTC+8), the airborne LIDAR data is acquired in the foci area in the Heihe,middle reaches, which can provide high spatial resolution (m) and high precision (20 cm) of the surface elevation information. Based on airborne LIDAR data processing, the land surface DEM, DSM and point cloud density map were generated. By subtracting DSM and DEM directly, a Vegetation height product in the middle reaches of the Heihe River Basin was obtained. The product overall accuracy is 88%.

0 2019-09-15