Long-term (1982-2018) global gross primary production dataset based on NIRv

Vegetation photosynthesis is a key component of carbon cycle in terrestrial ecosystem. Simulating photosynthesis activities on different spatial and temporal scales is helpful to solve the problem of land carbon budget, and it is also an important way to accurately predict the direction of future climate change and an important prerequisite for scientific understanding of the supporting capacity of terrestrial ecosystem for sustainable development of human society. At present, although a variety of algorithms and products for estimating the total primary productivity (GPP) of ecosystems have been relatively mature, there are still great differences and uncertainties in the global GPP products of long time series, especially the trend of their temporal variation. Sunlight induced chlorophyll fluorescence (SIF) remote sensing is a new type of remote sensing technology developed rapidly in recent years. The close relationship between SIF and photosynthetic process makes it an effective probe to indicate the changes of vegetation photosynthesis and a powerful means to monitor GPP. A new vegetation index (Nirv) based on remote sensing data, namely the product of normalized vegetation index (NDVI) and near-infrared reflectance, is highly related to remote sensing SIF products; based on mechanism derivation, model simulation and analysis of remote sensing data, Nirv can be used as an alternative product of SIF to estimate global GPP. Therefore, on the basis of analyzing the feasibility of Nirv as SIF and GPP probe, this data set generates the global high-resolution long-time series GP data from 1982 to 2018 based on the AVHRR data of remote sensing and hundreds of flux stations around the world, and analyzes the temporal and spatial variation trend of global GPP. The resolution is month, 0.05 degree, and the data unit is gcm-2 The annual average global GPP is about 128.3 ± 4.0 PG Cyr − 1, and the root mean square error (RMSE) of the data is 1.95 gcm-2 D-1. The data set can be used to study global climate change and carbon cycle.

0 2020-10-28

Land Surface Soil Moisture Dataset of SMAP Time-Expanded Daily 0.25°×0.25° over Qinghai-Tibet Plateau Area (SMsmapTE, V1)

This dataset contains land surface soil moisture products with SMAP time-expanded daily 0.25°×0.25°in Qinghai-Tibet Plateau Area. The dataset was produced based on the Random Forest method by utilizing passive microwave brightness temperature along with some auxiliary datasets. The temporal resolution of the product in 1980,1985,1990,1995 and 2000 is monthly, by using SMMR, SSM/I, and SSMIS brightness temperature from 19 GHz V/H and 37 GHz V channels. The temporal resolution of the product between June 20, 2002 and Dec 30, 2018 is daily, by utilizing AMSR-E and AMSR2 brightness temperature from 6.925 GHz V/H, 10.65 GHz V/H, and 36.5 GHz V channels. The auxiliary datasets participating in the Random Forest training include the IGBP land cover type, GTOPO30 DEM, and Lat/Lon information.

0 2020-10-26

Daily 0.01°×0.01° Land Surface Soil Moisture Dataset of the Qinghai-Tibet Plateau (SMHiRes, V1)

This dataset contains daily 0.01°×0.01° land surface soil moisture products in the Qinghai-Tibet Plateau in 2005, 2010, 2015, 2017, and 2018. The dataset was produced by utilizing the multivariate statistical regression model to downscale the “SMAP Time-Expanded 0.25°×0.25° Land Surface Soil Moisture Dataset in the Qinghai-Tibet Plateau (SMsmapTE, V1)”. The auxiliary datasets participating in the multivariate statistical regression include GLASS Albedo/LAI/FVC, 1km all-weather surface temperature data in western China by Ji Zhou, and Lat/Lon information.

0 2020-10-26

Multiyear in-situ L-band microwave radiometry of land surface processes on the Tibetan Plateau (2016-2019)

This dataset contains measurements of L-band brightness temperature by an ELBARA-III microwave radiometer in horizontal and vertical polarization, profile soil moisture and soil temperature, turbulent heat fluxes, and meteorological data from the beginning of 2016 till August 2019, while the experiment is still continuing. Auxiliary vegetation and soil texture information collected in dedicated campaigns are also reported. This dataset can be used to validate the Soil Moisture and Ocean Salinity (SMOS) and Soil Moisture Active Passive (SMAP) satellite based observations and retrievals, verify radiative transfer model assumptions and validate land surface model and reanalysis outputs, retrieve soil properties, as well as to quantify land-atmosphere exchanges of energy, water and carbon and help to reduce discrepancies and uncertainties in current Earth System Models (ESM) parameterizations. ELBARA-III horizontal and vertical brightness temperature are computed from measured radiometer voltages and calibrated internal noise temperatures. The data is reliable, and its quality is evaluated by 1) Perform ‘histogram test’ on the voltage samples (raw-data) of the detector output at sampling frequency of 800 Hz. Statistics of the histogram test showed no non-Gaussian Radio Frequency Interference (RFI) were found when ELBAR-III was operated. 2) Check the voltages at the antenna ports measured during sky measurements. Results showed close values. 3) Check the instrument internal temperature, active cold source temperature and ambient temperature. 3) Analysis the angular behaviour of the processed brightness temperatures. -Temporal resolution: 30 minutes -Spatial resolution: incident angle of observation ranges from 40° to 70° in step of 5°. The area of footprint ranges between 3.31 m^2 and 43.64 m^2 -Accuracy of Measurement: Brightness temperature, 1 K; Soil moisture, 0.001 m^3 m^-3; Soil temperature, 0.1 °C -Unit: Brightness temperature, K; Soil moisture, m^3 m^-3; Soil temperature, °C/K

0 2020-10-25

Global near-surface soil freeze/thaw state (2002-2019)

The freezing / thawing state of near surface soil represents the dormancy and activity of land surface processes. This alternation of freezing and thawing phases can cause a series of complex surface process trajectory mode mutations, and affect the water cycle processes such as soil hydrothermal characteristics, surface runoff and groundwater recharge, and also affect climate change through water and energy cycle mechanism. This data set is based on AMSR-E and amsr2 passive microwave data, using discriminant algorithm to prepare global near earth surface freeze-thaw state (spatial resolution: 0.25 °; time span: 2002-2019), data storage type: 8-bit unsigned integer (file type:. HDF5) 5) Among them: 0: water body and missing data; 1: frozen soil; 2: thawed soil; 3: precipitation; 15: perennial snow and ice sheet. It can be used to analyze the spatial distribution and trend of the global freeze-thaw cycle, such as the start / end date, freezing / thawing duration, freezing range and other indicators. It can provide data support for understanding the interaction mechanism between land surface freeze-thaw cycle and water and energy exchange process under the background of global change. For detailed naming and missing of data, please refer to the data description.

0 2020-10-21

HiWATER: Multi-scale observation experiment on land surface temperature-dataset of component temperature in the down of Heihe River Basin (Thermal infrared radiometer) (2014-2016)

This dataset includes component temperatures measured by the thermal infrared (TIR) radiometers at the Mixed Forest and Sidaoqiao stations between 22 July, 2014 and 19 July, 2016. The Mixed Forest (101.1335 °E, 41.9903 °N, 874 m.a.s.l.) and Sidaoqiao (101.1374 °E, 42.0012 °N, 873 m.a.s.l.) stations were located in the downstream of the Heihe River basin, Dalaihubu Town, Ejin Banner, Inner Mongolia. At the Mixed Forest station, two TIR radiometers (SI-111, Apogee Instruments Inc., USA) connected to a data logger (CR800, Campbell Scientific Inc., USA) measured component temperatures of the sunlit canopy and shaded canopy. TIR radiometers were mounted horizontally at 5 m height on iron rods just south and north of a tree and pointed to its canopy. The distance from the sensor to the canopy was ~1 m. At the Sidaoqiao station, two SI-111 TIR radiometers connected to a CR800 data logger measured component temperatures of the soil and shrub. The first sensor pointed from 2 m height under a viewing zenith angle of 45° to bare soil; the second sensor was mounted at 1-m height and pointed horizontally into the shrub canopy.

0 2020-10-13

HiWATER: MUlti-scale observation experiment on land surface temperature (MUSOES)- dataset of component temperature in the down of Heihe River Basin (Thermal imager)

This dataset includes component temperatures measured by the thermal imager at the Mixed Forest and Sidaoqiao stations between 23 July and 18 August, 2014. The Mixed Forest (101.1335 °E, 41.9903 °N, 874 m.a.s.l.) and Sidaoqiao (101.1374 °E, 42.0012 °N, 873 m.a.s.l.) stations were located in the downstream of the Heihe River basin, Dalaihubu Town, Ejin Banner, Inner Mongolia. At the Mixed Forest station, a Testo 890-2 thermal imager (Testo Inc., Germany) with a resolution of 640 × 480 pixels was employed to acquire brightness temperature images. The imager was manually operated from a 10-m height platform of the tower between 10:00-16:00 (China Standard Time, CST) with an observation interval of 1-h on cloudless days. On August 4th observations were acquired between 11:00 and 17:00 at an interval of 10-min to match observations acquired with an airborne TIR imager. The ground based imager was pointed to five viewing directions (southeast-SE, east-E, northeast-NE, northwest-NW, and southwest-SW) and was inclined 25°–45° below the horizon depending on viewing direction. At Sidaoqiao station, a Testo 875-2i imager (Testo Inc., Germany) with a resolution of 160 × 120 pixels was manually operated from a 10-m high platform to acquire brightness temperature images in directions SW, SE, NE, and NW. Depending on the targets in each viewing direction, the imager was inclined to 30°–45° below the horizon. Observations at Sidaoqiao and Mixed Forest stations were almost synchronous. Furthermore, visible images were taken simultaneously with the aforementioned two TIR imagers (2048 × 1536 pixels for Testo 890-2 and 640 × 480 pixels for Testo 875-2i).

0 2020-10-13

HiWATER: COSMO-SkyMed dataset (2012)

This dataset includes three scenes, covering the artificial oasis eco-hydrology experimental area of the Heihe River Basin, which were acquired on (yy-mm-dd hh:mm, BJT) 2012-07-25 07:12, 2012-07-28 19:55, 2012-08-02 07:12. The data were all acquired at PingPong mode with product level of SLC, and these three images are of VV/VH, HH/HV and VV/VH polarization, respectively. COSMO-SkyMed dataset was acquired from Italian Space Agency (ASI) “COSMO-SkyMed project 1720: HYDROCOSMO” (Courtesy: Prof. Shi Jiancheng from the State Key Laboratory of Remote Sensing Science of China).

0 2020-10-13

HiWATER: SPOT dataset (2012)

This dataset includes one scene acquired on (yy-mm-dd) 2012-09-06, covering the natural oasis eco-hydrology experimental area in the lower reaches of the Heihe River Basin. This datum contains panchromatic and multi-spectral bands, with spatial resolution of 2.5 m and 10 m, respectively. The data product level of this image is Level 1. QuickBird dataset was acquired through purchase.

0 2020-10-13

HiWATER:WorldView dataset

This dataset includes one scene acquired on (yy-mm-dd) 2012-05-12, covering the Pailugou catchment. This datum is of panchromatic bands, with spatial resolution of 0.5 m. The data product level of this image is L2. WorldView dataset was acquired through purchase.

0 2020-10-13