Characteristics of individual particles from biomass combustion in pastoral areas (2020)

Due to the unique lifestyle of residents and single fuel source, the main fuel in the pastoral area of Qinghai Tibet Plateau is dried yak dung. Yak dung is collected in piles or moulded into dung cake, which is stored after air drying. When used for cooking and heating in residences, it is always burned in cast iron stove. The carbonaceous particles released by yak dung burning are almost the only black carbon aerosol emission source in the vast pastoral area besides motor vehicles. This data set was established by measuring the morphology, particle size and element composition of single particles emitted from yak dung combustion in typical pastoral areas of the Qinghai Tibet Plateau. The sampling sites included Dangxiong County in Naqu and Dazi County in Lhasa. The field sampling location were the chimney outlet of residential homes. The particles were collected on the polycarbonate filter membrane and analyzed in the laboratory by means of computer-controlled scanning electron microscope and X-ray energy spectrometer. The environmental single particles emitted from yak dung combustion in pastoral areas include soot aggregates, tar balls, heavy metals containing carbonaceous particles, mineral dust, and soluble salt particles. This data set includes the numer percentages, particle size and their shape factor (aspect ratio, roundness and form factor) of various types of particles with statistical significance, It is not only an effective supplement to the basic data of human activities affecting the atmospheric environment, but also has potential significance for evaluating their optical characteristics, radiation effects, health effects and environmental impact of local source carbonaceous aerosols on the plateau.

0 2021-11-16

Characteristics of black carbon, primary and secondary Brown carbon in different regions of Qinghai Xizang Plateau (2018-2020)

The Qinghai Tibet Plateau is surrounded by regions with high global carbon aerosol emissions, and the surrounding black carbon and brown carbon can be transmitted to the plateau. Light absorbing black carbon and brown carbon have warming effect, and their settlement on the surface of ice and snow will also accelerate the melting of glaciers and snow. At present, there is little research on brown carbon in this area, and the research on the correlation between brown carbon components and optics is in its infancy. Therefore, the study of Atmospheric Black Carbon and brown carbon in the Qinghai Tibet Plateau has important climate and environmental significance. The aerosol optical absorption characteristics of Atmospheric Black Carbon and brown carbon were obtained by observing in different regions of the Qinghai Tibet Plateau. It reveals the spatial differences of optical absorption of black carbon, primary Brown carbon and secondary Brown carbon aerosols in different regions of the Qinghai Tibet Plateau.

0 2021-11-16

Black carbon observation data of Ali, Tibet (2019-2020)

The data set is the observation data of Shiquanhe town in Ali area. The longitude, latitude and altitude of the station in Ali area are 32.50 and 80.10 respectively; 4360m。 Continuously observe the mass concentration of black carbon in the atmosphere. The measuring instrument is ae31 (aethalometer), and its observation period is from 12:00:00 on July 13, 2019 to 21:35:00 on July 17, 2020. The time resolution is 5 minutes. There is data loss due to instrument failure. The data file includes instrument information, flow parameter setting (LPM) and specific observed concentration. Supported project: the second comprehensive scientific investigation and Research on the Qinghai Tibet Plateau 2019QZKK0602.

0 2021-10-04

On line observation data set of Hengduanshan mountain gorge area

The data set is from Gaomeigu area in Lijiang, Yunnan Province. The longitude, latitude and altitude of Gaomeigu area are 100 E ° 01 ′ 51 ″, 26 n ° 42 ′ 32 ″, altitude 3200m. The data set includes: 1. Continuous observation of the mass concentration of fusible chemical components in the atmosphere, including organic matter, nitrate, sulfate, chloride and ammonia. The measurement instrument is the aerosol chemical composition on-line monitor (ACSM). The observation period is from 00:29 on March 13, 2018 to 01:27 on April 7, 2018, and the time resolution is 30 minutes. The intermediate instrument runs well, and the data is missing occasionally. The data file contains the mass concentration data of each component measured by the instrument. 2. Continuously observe the mass concentration of black carbon in the atmosphere. The measuring instrument is aethalometer ae33 black carbon instrument produced by Magee company. The observation period is from 00:00 on March 14, 2018 to 23:59 on May 13, 2018, and the time resolution is 1 minute. The whole observation instrument works well, and the data is missing occasionally. The data file contains the information of the instrument, the measured mass concentration data of black carbon and various parameters of the instrument, including temperature, pressure, flow rate, etc. 3. Continuously observe the mass concentration of nitric oxide and nitrogen oxides in the atmosphere. The measuring instrument is the NOx analyzer produced by Thermo Fisher company. The observation period is from 00:00 on April 10, 2018 to 23:59 on May 13, 2018, and the time resolution is 1 minute. The whole observation instrument works well, and the data is missing occasionally. The data file contains the mass concentration data of NOx and no gas measured by the instrument. 4. Continuously observe the mass concentration of ozone in the atmosphere. The measuring instrument is the 49i ozone analyzer produced by Thermo Fisher company. The observation period is from 00:00 on March 15, 2018 to 23:59 on May 13, 2018, and the time resolution is 1 minute. The whole observation instrument works well, and the data is missing occasionally. The data file contains the mass concentration data of ozone gas measured by the instrument. 5. Continuously observe the mass concentration of sulfur dioxide in the atmosphere. The measuring instrument is sulfur dioxide analyzer produced by Thermo Fisher company. The observation period is from 00:00 on March 15, 2018 to 23:59 on May 13, 2018, and the time resolution is 1 minute. The whole observation instrument works well, and the data is missing occasionally. The data file contains the mass concentration data of sulfur dioxide gas measured by the instrument. Supported project: the second comprehensive scientific expedition to the Qinghai Tibet Plateau 2019qzk0602.

0 2021-06-03

Atmospheric environment observation data set of northeast Qinghai Tibet Plateau (September 10, 2019 and September 10, 2020)

This data-set contains the field measurements of meteorological parameters,trace gases, PM2. 5/PM10, particle number size distribution (12-530 nm), aerosol chemical composition (sulfate, nitrate and heavy metal components in PM2.5) at Geermu and Xihai (36.4oN, 94.8oE, 2800 m a.s.l. and 36.9oN, 100.9oE, 3080 m a.s.l., respectively) and the mobile measurements of trace gases in northeastern part of Tibetan Plateau. The time period of this data-set is from September to October in 2019 and 2020. The data-set comes from two measurement campaigns in 2019 and 2020. The mobile observation platform of Nanjing University, including various online measurement instruments(Duvas-DV3000,microAeth®-MA200,Vaisala weather probe), was used to conduct the field measurements. The data in this data-set is finalized data with the data correction according to the instruments calibration and data quality control based on the data closure research results between multiple instruments. The atmospheric components data, such as trace gases, PM2.5/PM10, particle number size distribution, aerosol chemical composition, are the observation data under actual atmospheric pressure conditions without pressure corrections. The data-set can be directly used to analyze the atmospheric physics and chemistry related scientific issues in the northeastern part of the Tibetan Plateau. This data-set supplements the lack of field observation data related to the atmospheric environment in the northeastern part of the Tibetan Plateau.

0 2021-04-26

Black carbon concentration at 5 stations over Tibetan Plateau (2018)

As the “water tower of Asia”, Tibetan Plateau (TP) are the resource of major rivers in Asia. Black carbon (BC) aerosol emitted from surrounding regions can be transported to the inner TP by atmospheric circulation and consequently deposited in snow, which can significantly influence precipitation and mass balance of glaciers. Five Aethalometers are used to mornitoring black carbon concentration at 5 stations on the Tibetan Plateau. It can provide basic dataset to study the effects of BC to the environment and climate over the Tibetan Plateau, as well as the pollutants transport.

0 2021-03-17

Daily average of atmospheric black carbon concentration at theNASDE(2017-2019)

(1) Daily average of atmospheric black carbon concentration(ng/m3) at the NASDE. (2) Instruments: Aethalometer (AE33). This instrument collected data with a resolution of one minute. The abnormal data collected at the start-up or faulty stage were manually excluded before analysis further. We generated daily average based on the National Ambient Air Quality Standard of China (GB 3095-2012). (3) From May to November, 2018, a wildlife Conservation Station nearby was constructed, which frequentlyexposed largeamounts of particles, thus the BC concentration was far beyond that collected in the same season of other years. The data in this period shouldbeusedwith greatcaution. Due to problems in the instrument or electric power supply, thedata was lost in other periods. (4) The instrument was placed at the Ngari Station for Desert Environment Observation and Research (79.70° E, 33.39°N, 4270 m above sea level).

0 2021-03-08

Dataset of black carbon concentration at Mt. Everest Station from May 2015 to May 2017

Black carbon(BC) is a carbonaceous aerosol that mainly emitted from the incomplete combustion of fossil fuels or biomass. As fine particles in the atmosphere with light-absorbing characteristic, BC can significantly reduce the surface albedo when deposits on snow and ice and accelerate the melting of glaciers and snow cover. New Aethalometer model AE-33 acquires the real-time BC concentration according to the light absorption and attenuation characteristics from the different wavelengths. In addition, AE-33 uses dual-spot measurements, which can compensate for the “spot loading effect” and obtain high-quality BC concentrations. By using the real-time observation data measured by AE-33 at Mt. Everest Station, we analyzed the seasonal and diurnal variations of BC and its sources and transport processes, and we also investigated the transport mechanisms of serious polluted episodes. That can provide basis for future works on assessment of climate effects caused by BC in this region.

0 2020-08-15

Observational data of atmospheric black carbon content in the Tibetan plateau at five stations (2019)

As the "water tower" of Asia, the Qinghai Tibet Plateau provides water resources for the main rivers in Asia. BC aerosol emitted from biomass and fossil fuel combustion has a strong absorption effect on radiation, and has an important impact on the energy budget and distribution of the earth system. It is an important influence factor of climate and environmental change. The black carbon aerosols emitted from the surrounding areas of the Qinghai Tibet Plateau can be transported to the interior of the plateau through the atmospheric circulation, and settle on the surface of snow and ice, which has an important impact on precipitation and glacier mass balance. Black carbon meters were set up at five stations on the Qinghai Tibet Plateau, and aethalometer was used to measure the black carbon content in the atmosphere online. The time resolution of the data was day by day. This data is an update of the previously released "observational data of black carbon content in the atmosphere of the Qinghai Tibet Plateau (2018)". The information of the five sites is as follows: Namco: 30 ° 46'N, 90 ° 59'e, 4730 ma.s.l Mt. Everest: 28.21 ° n, 86.56 ° e, 4276 ma. S.l Southeast Tibet: 29 ° 46'N, 94 ° 44'e, 3230 ma.s.l Ali station: 33.39 ° n, 79.70 ° e, 4270 ma. S.l Mostag: 38 ° 24'n, 75 ° 02'e, 3650 ma.s.l

0 2020-07-29

Dataset of PM2.5 aerosol particle concentration at different locations on Tibetan Plateau (2019)

This data set includes PM2.5 mass concentrations (unit: μ g / m3) of atmospheric aerosol particles from South-East Tibetan plateau Station, Ngari Station, Muztagh Ata Station, Qomolangma station and Namco station. Aerosol PM2.5 fine particles refer to the particles with aerodynamic equivalent diameter less than or equal to 2.5 μ m in ambient air. It can be suspended in the air for a long time, which has an important impact on air quality and visibility. The higher its concentration in the air, the more serious the air pollution. The concentration characteristic data of PM2.5 were calculated every 5 The analysis of aerosol mass concentration in different time scales, such as hour, day and night, season and inter annual, can be achieved by obtaining a group of data frequency for output. This provides important data support for the analysis of aerosol mass concentration changes in different time scales and its influencing factors in different locations of the Qinghai Tibet Plateau, as well as the evaluation of local air quality. The data is an update of the published data set of aerosol PM2.5 concentration at different stations on the Qinghai Tibet Plateau (2018).

0 2020-07-18