Ground temperature data of the Yellow River source (2013-2015)

This data includes the ground temperature data of the source area of the Yellow River The main model of Permafrost Distribution in the source area of the Yellow River is constructed based on the permafrost boreholes and the measured ground temperature data. The temperature value of the permafrost on the sunny slope terrain is adjusted separately, and the fine-tuning model under the sunny slope terrain is established. The simulation results of the boreholes participating in the model construction are compared with the measured results, and the results show that the model is involved in the construction of the model The results show that the model is feasible to simulate the spatial distribution pattern of permafrost annual average ground temperature in the source area of the Yellow River

0 2020-10-29

The mean annual ground temperature (MAGT) and permafrost thermal stability dataset over Tibetan Plateau for 2005-2015

Mean annual ground temperature (MAGT) at a depth of zero annual amplitude and permafrost thermal stability type are fundamental importance for engineering planning and design, ecosystem management in permafrost region. This dataset is produced by integrating remotely sensed freezing degree-days and thawing degree-days, snow cover days, leaf area index, soil bulk density, high-accuracy soil moisture data, and in situ MAGT measurements from 237 boreholes for the 2010s (2005-2015) on the Tibetan Plateau (TP) by using an ensemble learning method that employs a support vector regression (SVR) model based on distance-blocked resampling training data with 200 repetitions. Validation of the new permafrost map indicates that it is probably the most accurate of all available maps at present. The RMSE of MAGT is approximately 0.75 °C and the bias is approximately 0.01 °C. This map shows that the total area of permafrost on the TP is approximately 115.02 (105.47-129.59) *104 km2. The areas corresponding to the very stable, stable, semi-stable, transitional, and unstable types are 0.86*104 km2, 9.62*104 km2, 38.45*104 km2, 42.29*104 km2, and 23.80*104 km2, respectively. This new dataset is available for evaluate the permafrost change in the future on the TP as a baseline. More details can be found in Ran et al., (2020) that published at Science China Earth Sciences.

0 2020-10-28

Data set of spatial and temporal distribution of water resources in Yarlung Zangbo River from 1998 to 2016

This data is a 5km monthly hydrological data set, including grid runoff and evaporation (if evaporation is less than 0, it means condensation; if runoff is less than 0, it means precipitation is less than evaporation). This data is a 5km monthly hydrological data set, including grid runoff and evaporation (if evaporation is less than 0, it means condensation; if runoff is less than 0, it means precipitation is less than evaporation).

0 2020-08-27

Simulated soil temperature and moisture in the Babao River Basin

The ground temperature, moisture and ice content at various depth (0 cm, 4 cm, 10 cm, 20 cm, 40 cm, 80 cm, 120 cm, 160 cm, 240 cm, 400 cm, 600 cm, 900 cm, 1200 cm, 1400 cm, 1500 cm) was generated through the SHAW model, which was evaluated by observations at AWS stations and WSN in the study area and could be used in research relevant on soil freezing and thawing.

0 2020-08-23

Distribution map of frozen soil and subsurface ice in Russia (1:20,000,000) (1997)

This dataset is the spatial distribution map of the marshes in the source area of the Yellow River near the Zaling Lake-Eling Lake, covering an area of about 21,000 square kilometers. The data set is classified by the Landsat 8 image through an expert decision tree and corrected by manual visual interpretation. The spatial resolution of the image is 30m, using the WGS 1984 UTM projected coordinate system, and the data format is grid format. The image is divided into five types of land, the land type 1 is “water body”, the land type 2 is “high-cover vegetation”, the land type 3 is “naked land”, and the land type 4 is “low-cover vegetation”, and the land type 5 is For "marsh", low-coverage vegetation and high-coverage vegetation are distinguished by vegetation coverage. The threshold is 0.1 to 0.4 for low-cover vegetation and 0.4 to 1 for high-cover vegetation.

0 2020-06-04

Frozen land temperature monitoring dataset of Tibet Plateau Beibeihe meteorological station (2017-2018)

Frozen soil refers to a soil or rock mass with a temperature lower than or equal to 0 ° C and containing ice. It is particularly sensitive to temperature and its physical and mechanical properties change significantly with temperature. The frost heaving deformation and melt settlement deformation of frozen soil are the most common frozen soil disasters. Their occurrence is mainly caused by the change of the inherent temperature of frozen soil due to the frozen soil engineering activities. Therefore, the protection of frozen soil is mainly to protect the temperature of frozen soil. , to maintain it in the closest state before the engineering activities. The main method for obtaining the temperature of the frozen land is to embed the temperature measuring cable. Through the data acquisition function of the CR3000, the resistance value of the temperature measuring cable is obtained at different times, and the temperature value is calculated by the correspondence between the calibration coefficient and the resistance value. According to the sensitive characteristics of frozen soil to temperature, the change of ground temperature can reflect the change of climate, and can also analyze the influence mechanism and degree of human activities on the stability of frozen soil in combination with other factors, so as to guide the later engineering activities. Upgrading and upgrading of frozen soil protection measures.

0 2020-06-02

Dataset of ground temperature in Jiagedaqi along the China-Russia Crude Oil Pipeline (Version 1.0) (2012-2018)

The borehole is about 7km away from Jiagedaqi City (50.47°N, 124.23°E), located in a wetland with about 80cm-thick peaty soil. There are three boreholes, and one is 2m away from the pipe center and 20m deep, the second is 16.6m away and 20m deep, and the third is 50m away from the second pipeline and 60 m deep. Based on the temperature borehole with a diameter of 40 mm and depths of 20 to 60 m, the ground temperature along the China-Russia Crude Oil Pipeline was measured using the thermistor sensor, which was assembled by State Key Laboratory of Frozen Soil Engineering, and calibrated with an accuracy of ±0.05℃. Therefore, the critical characteristic parameters such as ground stratigraphy, temperature of permafrost, surface temperature and active layer thickness were obtained. During the period from October 2014 to October 2017, ground temperatures in the T1 and T2 boreholes were collected manually. The ground temperatures in T3 was collected automatically and continuously since 12 June of 2018. Then the continuous and complete record of ground temperature data uploaded to the specified server (fixed IP address) by the wireless transmission module utilizing cellular networks. From these measured data along the China-Russia Crude Oil Pipeline route, the development characteristics and historical evolution of permafrost, and its response to the climate change can be analyzed.

0 2020-05-30

The surface temperature data of the Tibet engineering corridor (2000-2010)

As the main parameter in the land surface energy balance, surface temperature indicates the degree of land-atmosphere energy and water transfer and is widely used in research on climatology, hydrology and ecology. In the study of frozen soil, climate is one of the decisive factors for the existence and development of frozen soil. The surface temperature is the main climatic factor affecting the distribution of frozen soil and affects the occurrence, development and distribution of frozen soil. It is the upper boundary condition for modelling frozen soil and is significant to the study of hydrological processes in cold regions. The data set was based on the DEM and observation station data of the Tibetan Plateau Engineering Corridor and analysed the changing trend of surface temperature on the Tibetan Plateau from 2000 to 2014. Using the surface temperature data products MOD11A1/A2 and MYD11A1/A2 of MODIS aboard Terra and Aqua, the surface temperature information under cloud cover was reconstructed based on the spatio-temporal information of the images. The reconstruction information and surface temperature representativeness problems were analysed using information obtained from 8 sites, including the Kunlun Mountains (wetland, grassland), Beiluhe (grassland, meadow), Kaixinling (meadow, grassland), and Tanggula Mountain (meadow, wetland). According to the correlation coefficient (R2), root-mean-square error (RMSE), mean absolute error (MAE) and mean deviation (MBE), the following results were obtained: (1) the reconstruction accuracy of MODIS surface temperature under cloud cover is higher when it is based on spatio-temporal information; (2) the weighted average representation is the best when generalizing four observations of Terra and Aqua. By analysing the reconstruction of MODIS surface temperature information and representativeness problems, the average annual MODIS surface temperature data of the Tibetan Plateau and the engineering corridor from 2000 to 2010 were obtained. According to the data set, the surface temperature from 2000 to 2010 also experienced volatile rising trends from 2000 to 2010, which is basically consistent with the changing trend of the climate change in the permafrost regions of the Tibetan Plateau and the Qinghai-Tibet Engineering Corridor.

0 2020-04-29

A permafrost thermal type map on the Tibetan Plateau (2000-2010)

The past frozen soil map of the Tibetan Plateau was based on a small number of temperature station observations and used a classification system based on continuity. This data set used the geographically weighted regression model (GWR) to synthesize MODIS surface temperature, leaf area index, snow cover ratio and multimodel soil moisture forecast products of the National Meteorological Information Center through spatiotemporal reconstruction. In addition, precipitation observations of more than 40 meteorological stations, the precipitation products of FY2 satellite observations and the multiyear average temperature observation data of 152 meteorological stations from 2000 to 2010 were integrated to simulate the average temperature data of the Tibetan Plateau, and the permafrost thermal condition classification system was used to classify permafrost into several types: Very cold, Cold, Cool, Warm, Very warm, and Likely thawing. The map shows that, after deducting lakes and glaciers, the total area of permafrost on the Tibetan Plateau is approximately 1,071,900 square kilometers. Verification shows that this map has higher accuracy. It can provide support for future planning and design of frozen soil projects and environmental management.

0 2020-04-29

The spatial-temporal distribution of topographic shadows in the upper reaches of Heihe River Basin

The spatial-temporal distribution map of topographic shadows in the upper reaches of Heihe River (2018), which is calculated based on the SRTM DEM and the solar position (http://www.esrl.noaa.gov/gmd/grad/solcalc/azel.html). The spatial resolution is 100 m and the time resolution is 15 min. The datased can be used in the fields of ecological hydrology and remote sensing research. Using the observed solar radiation at several automatic weather stations in the upper reaches of Heihe River, the accuracy of the calculation results is verified. Results show that the dataset can accurately capture the temporal and spatial changes of the topographic shadow at the stations, and the time error is within 20 minutes.

0 2019-12-13