SRTM DEM data on the Tibetan Plateau (2012)

This data set is mainly the SRTM terrain data obtained by International Center for Tropical Agriculture (CIAT)with the new interpolation algorithm, which better fills the data void of SRTM 90. The interpolation algorithm was adpoted from Reuter et al. (2007). SRTM's data organization method is as follows: divide a file into 24 rows (-60 to 60 degrees) and 72 columns (-180 to 180 degrees) in every 5 degrees of latitude and longitude grid, and the data resolution is 90 meters. Data usage: SRTM data are expressed as elevation values with 16-bit values (-/+/32767 m), maximum positive elevation of 9000m, and negative elevation (12000m below sea level). For null data use the -32767 standard.

0 2021-08-02

Precipitation data on Tibetan Plateau (2000-2015)

The Qinghai Tibet Plateau belongs to the plateau mountain climate. The precipitation, its seasonal distribution and the change of precipitation forms have been one of the hot spots in the global climate change research. The data includes precipitation data of Qinghai Tibet Plateau, with spatial resolution of 1km * 1km, temporal resolution of month and year, and time coverage of 2000, 2005, 2010 and 2015. The data are obtained by Kring interpolation of meteorological data of National Meteorological Science Information Center. The data can be used to analyze the temporal and spatial distribution of precipitation over the Qinghai Tibet Plateau. In addition, the data can also be used to analyze the temporal and spatial variation of precipitation over the Qinghai Tibet Plateau, which is of great significance to the study of the ecological environment of the Qinghai Tibet Plateau.

0 2021-04-09

Data of soil organic matter in Qinghai-Tibet Plateau (1979-1985)

The data include soil organic matter data of Tibetan Plateau , with a spatial resolution of 1km*1km and a time coverage of 1979-1985.The data source is the soil carbon content generated from the second soil census data.Soil organic matter mainly comes from plants, animals and microbial residues, among which higher plants are the main sources.The organisms that first appeared in the parent material of primitive soils were microorganisms.With the evolution of organisms and the development of soil forming process, animal and plant residues and their secretions become the basic sources of soil organic matter.The data is of great significance for analyzing the ecological environment of Tibetan Plateau

0 2021-04-09

Photosynthetically active radiation absorption coefficient dataset in Qinghai Tibet Plateau (2000-2015)

Photosynthetic effective radiation absorption coefficient photosynthetically active radiation component is an important biophysical parameter. It is an important land characteristic parameter of ecosystem function model, crop growth model, net primary productivity model, atmosphere model, biogeochemical model and ecological model, and is an ideal parameter for estimating vegetation biomass. The data set contains the data of photosynthetically active radiation absorption coefficient in Qinghai Tibet Plateau, with spatial resolution of 500m, temporal resolution of 8D, and time coverage of 2000, 2005, 2010 and 2015. The data source is MODIS Lai / FPAR product data mod15a2h (C6) on NASA website. The data are of great significance to the analysis of vegetation ecological environment in the Qinghai Tibet Plateau.

0 2021-04-09

Temporal and spatial matching pattern data and maps of water and soil resources on Tibetan Plateau (resolution 1km) (2008-2015)

The Tibetan Plateau in China covers six provinces including Tibet, Qinghai, Xinjiang, Yunnan, Gansu and Sichuan, including Tibet and Qinghai, as well as parts of Xinjiang, Yunnan, Gansu and Sichuan. The research on water and soil resources matching aims to reveal the equilibrium and abundance of water resources and land resources in a certain regional scale. The higher the level of consistency between regional water resources and the allocation of cultivated land resources, the higher the matching degree, and the superior the basic conditions of agricultural production. The general agricultural water resource measurement method based on the unit area of cultivated land is used to reflect the quantitative relationship between the water supply of agricultural production in the study area and the spatial suitability of cultivated land resources. The Excel file of the data set contains the generalized agricultural soil and water resource matching coefficient data of the Tibetan Plateau municipal administrative region in China from 2008 to 2015, the vector data is the boundary data of the Tibetan Plateau municipal administrative region in China in 2004, and the raster data pixel value is the generalized agricultural soil and water resource matching coefficient of the year in the region.

0 2021-04-09

The map of fractional vegetation cover in the Yellow River source region of Tibet Plateau (2015)

This dataset is a pixel-based maximum fractional vegetation cover map within the Yellow River source region on the Qinghai-Tibet Plateau, with an area of about 44,000 square kilometers. Based on the time series images acquired from MODIS with a resolution of 250 m and Landsat-8 with a resolution of 30 m in 2015 during the vegetation growing season, the data are derived using dimidiate pixel model and time interpolation. The spatial resolution of the image is 30 m, using the WGS 1984 UTM projected coordinate system, and the data is in the format of grid.

0 2021-04-09

Aerial data of the Tibetan Plateau (2018)

The data set was acquired by uav aerial photography during the field investigation on the Tibetan Plateau in 2018. The data size was 5.72 GB, including more than 800 photos.The photo was taken from July 19, 2008 to July 26, 2008. The shooting locations mainly include yambajing, keshi village, apaixin village, zhongguo village, mirin village, ri village, chongkang village, kesong village, semi village, yamzhuo yoncho and the surrounding areas.Aerial photos more clearly reflect the local land cover, land use type distribution density, rivers and lakes, vegetation, etc.), work for land use remote sensing provides better validation information, can also be used for the estimation of vegetation coverage, for the study of land use in the study area provided a good reference information.

0 2020-05-29