A daily, 0.05° Snow depth dataset for Tibetan Plateau (2000-2018)

Under the funding of the first project (Development of Multi-scale Observation and Data Products of Key Cryosphere Parameters) of the National Key Research and Development Program of China-"The Observation and Inversion of Key Parameters of Cryosphere and Polar Environmental Changes", the research group of Zhang, Institute of Tibetan Plateau Research, Chinese Academy of Sciences, developed the snow depth downscaling product in the Qinghai-Tibet Plateau. The snow depth downscaling data set for the Tibetan Plateau is derived from the fusion of snow cover probability dataset and Long-term snow depth dataset in China. The sub-pixel spatio-temporal downscaling algorithm is developed to downscale the original 0.25° snow depth dataset, and the 0.05° daily snow depth product is obtained. By comparing the accuracy evaluation of the snow depth product before and after downscaling, it is found that the root mean square error of the snow depth downscaling product is 0.61 cm less than the original product. The details of the product information of the Downscaling of Snow Depth Dataset for the Tibetan Plateau (2000-2018) are as follows. The projection is longitude and latitude, the spatial resolution is 0.05° (about 5km), and the time is from September 1, 2000 to September 1, 2018. It is a TIF format file. The naming rule is SD_yyyyddd.tif, where yyyy represents year and DDD represents Julian day (001-365). Snow depth (SD), unit: centimeter (cm). The spatial resolution is 0.05°. The time resolution is day by day.

0 2021-10-12

SRTM DEM data on the Tibetan Plateau (2012)

This data set is mainly the SRTM terrain data obtained by International Center for Tropical Agriculture (CIAT)with the new interpolation algorithm, which better fills the data void of SRTM 90. The interpolation algorithm was adpoted from Reuter et al. (2007). SRTM's data organization method is as follows: divide a file into 24 rows (-60 to 60 degrees) and 72 columns (-180 to 180 degrees) in every 5 degrees of latitude and longitude grid, and the data resolution is 90 meters. Data usage: SRTM data are expressed as elevation values with 16-bit values (-/+/32767 m), maximum positive elevation of 9000m, and negative elevation (12000m below sea level). For null data use the -32767 standard.

0 2021-08-02

30m DEM of Sichuan Tibet traffic corridor (2006)

The data is from JAXA earth observation research center( http://www.eorc.jaxa.jp/ALOS/en/aw3d30/ )The product is alos World 3D - 30m (aw3d30). Select and download the map by importing the SHP boundary of Sichuan Tibet traffic corridor, and merge it into one by using relevant software. The format is raster data, the spatial resolution is 30m, and the data size is 1.3GB. The DEM data can generate topographic factor data such as slope, aspect and river network by using relevant software. They are the basic data for topographic analysis of Sichuan Tibet traffic corridor, help to understand the geomorphic form of the basin, and are also the key factors for disaster zoning research and risk assessment. The acquisition of high-precision DEM is of great significance for disaster risk management and decision-making level and reducing the loss of major geological disasters.

0 2021-08-02

Landform data of 90m of Sichuan Tibet traffic corridor (2009)

The ups and downs of the earth's surface become landforms. This data set is geomorphic data within the Sichuan Tibet traffic corridor area with an accuracy of 90m, and the data format is TIF. The data is digitized from the geomorphic Atlas of the people's Republic of China (1:1 million). The landforms of plains, hills and platforms are classified according to altitude and fluctuation. The accuracy of the data is low, and there are few types of landforms in the study area. The regional combination and vertical differentiation of various landforms are not only closely related to the changes of climate and hydrology and the distribution of soil and organisms, but also have a significant impact on industrial and agricultural production, water conservancy and transportation construction, but also an important factor that must be considered in the evolution and management of ecological environment.

0 2021-07-31

The digital elevation model of the Tibetan Plateau (2000)

This data set is a digital elevation model of the Tibetan Plateau and can be used to assist in analysis and research of basic geographic information for the Tibetan Plateau. The raw data were the Shuttle Radar Topography Mission (SRTM) data, which were provided by Global Land Cover Network (GLCN), and the raw data were framing data , using the WGS84 coordinate system, including latitude and longitude, with a spatial resolution of 3″. After the mosaic processing, the Nodata (null data) generated in the mosaic process were interpolated and filled. After filling, the projection conversion process was performed to generate data as Albers equal area conical projection. After the conversion projection, the spatial resolution of the data was 90 m. Finally, the boundary of the Tibetan Plateau was used for cutting to obtain DEM data. This data table has two fields. Field 1: value Data type: long integer Interpretation: altitude elevation Unit: m Field 2: count Data type: long integer Interpretation: The number of map spots corresponding to the altitude elevation Data accuracy: spatial resolution: 90 m

0 2021-07-19

Long time series ecological background map of Qinghai Tibet Plateau (1990-2015)

Based on the medium resolution long time series remote sensing image Landsat, the data set obtained six periods of ecosystem type distribution maps of the Qinghai Tibet Plateau in 1990 / 1995 / 2002 / 2005 / 2010 / 2015 through image fusion, remote sensing interpretation and data inversion, and made the original ecological base map of the Qinghai Tibet Plateau in 25 years (1990-2015). According to the area statistics of various ecosystems in the Qinghai Tibet Plateau, the area of woodland and grassland decreased slightly, the area of urban land, rural residential areas and other construction land increased, the area of rivers, lakes and other water bodies increased, and the area of permanent glacier snow decreased from 1990 to 2015. The atlas can be used for the planning, design and management of ecological projects in the Qinghai Tibet Plateau, and can be used as a benchmark for the current situation of the ecosystem, to clarify the temporal and spatial pattern of major ecological projects in the Qinghai Tibet Plateau, and to reveal the change rules and regional differences of the pattern and function of the ecosystem in the Qinghai Tibet Plateau.

0 2021-06-10

1 km grid datasets of habitat quality in agricultural and pastoral areas of the Qinghai-Tibet Plateau (1990-2015)

As the roof of the world, the water tower of Asia and the third pole of the world, the Qinghai Tibet Plateau is an important ecological security barrier for China and even Asia. With the rapid development of social economy, human activities have increased significantly, and the impact on the ecological environment is growing. In this paper, eight factors including cultivated land, construction land, National Road, provincial road, railway, expressway, GDP and population density were selected as the threat factors, and the attributes of the threat factors were determined based on the expert scoring method to evaluate the habitat quality of the Qinghai Tibet Plateau, so as to obtain six data sets of the habitat quality of the agricultural and pastoral areas of the Qinghai Tibet Plateau in 1990, 1995, 2000, 2005, 2010 and 2015. The production of habitat quality data sets will help to explore the habitat quality of the Qinghai Tibet Plateau and provide effective support for the government to formulate sustainable development policies of the Qinghai Tibet Plateau.

0 2021-06-08

Optical stimulated luminescence ages of the mega-lakes in the northwestern Tibetan Plateau

Paleo-shorelines are widely developed in the lakes of the Tibetan Plateau (TP), which record the history of paleo-lake level changes. The development age of the mega-lake represented by the highest paleo-shoreline is controversial. The age of the shoreline or the mega-lake can be obtained by measuring the burial age of the shoreline sand in the sedimentary strata of the paleo-shoreline by using the optical stimulated luminescence (OSL) dating technology. This data includes the OSL ages of the highest paleo-shorelines of three lakes in the northwestern TP. The dating is based on the K-feldspar pIRIR method developed in recent years, which effectively solves the problem that the quartz OSL signal is not suitable for dating in the study area. This data can provide key information for the evolution history of the mega-lakes on the TP.

0 2021-05-31

Basic geographic data of Qinghai Tibet Plateau (2015)

The data set is the basic data of the Qinghai Tibet Plateau in 2015. The original data comes from the National Basic Geographic Information Center, and the data of the Qinghai Tibet plateau region is formed by splicing and clipping the segmented data. The data content includes 1:1 million provincial administrative divisions, 1:1 million roads and 1:250000 water system. The data attributes of administrative divisions include name, code and Pinyin; Road data attributes include: GB, RN, name, rteg and type (basic geographic information classification code, road code, road name, road grade and road type); Water system data attributes include: GB, hydc, name, period (basic geographic information classification code, water system name code, name, season).

0 2021-05-26

Basic geographic dataset of the Qinghai-Tibetan Plateau (2000-2015)

The natural resources dataset of the Qinghai-Tibetan Plateau covers 215 counties in this area. The observation intervals are 5 years from 2000-2015. The indicators are rainfall, temperature, humidity, population, and land area. The data sources are meteorological station data, regional statistical yearbook, etc., which are expressed by Excel. This data provides a reference for understanding the natural background conditions on the county scale in the Qinghai Tibet Plateau.

0 2021-05-18