The Boundary Dataset of The Three-River-Source National Park

The Three-River-Source National Park with an area of 123,100 km2 and include three sub regions, they are source region of the Yangtze River in the national park, source region of Yellow River in the national park and source region of Lancang River in the national park. The national park is located between longitude 89°50'57" -- 99°14'57", latitude 32°22'36" -- 36°47'53". It accounts for 31.16% of the total area of Three-River-Source region. This data set is generated by digitizing the location map of Three-River-Source national park in the comprehensive planning of Three-River-Source national park. The data include the boundary for the national park. Data format is Shapefile. Arcmap is recommended to open the data.

0 2020-10-13

AMSR-E/aqua daily gridded brightness temperatures of China

This dataset includes passive microwave remote sensing brightness temperatures data for longitude and latitude projections and 0.25 degree resolution from 2002 to 2008 in China. 1. Data processing process: NSIDC produces AMSR-E gridded brightness temperature data by interpolating AMSR-E data (6.9 GHz, 10.7 GHz, 18.7 GHz, 23.8 GHz, 36.5 GHz, and 89.0 GHz) to the output grids from swath space using an Inverse Distance Squared (ID2) method. 2. Data format: Brightness temperature files: two-byte unsigned integers, little-endian byte order Time files: two-byte signed integers, little-endian byte order 3. Data naming: ID2rx-AMSRE-aayyyydddp.vnn.ccc (China-ID2r1-AMSRE-D.252002170A.v03.06V) ID2 Inverse Distance Squared r1 Resolution 1 swath input data AMSRE Identifies this an AMSR-E file D.25 Identifies this as a quarter degree file yyyy Four-digit year ddd Three-digit day of year p Pass direction (A = ascending, D = descending) vnn Gridded data version number (for example, v01, v02, v03) ccc AMSR-E channel indicator: numeric frequency (06, 10, 18, 23, 36, or 89) followed by polarization (H or V) 4. Cutting range: Corner Coordinates: Upper Left (60.0000000, 55.0000000) (60d 0'0.00 "E, 55d 0'0.00" N) Lower Left (60.0000000, 15.0000000) (60d 0'0.00 "E, 15d 0'0.00" N) Upper Right (140.0000000, 55.0000000) (140d 0'0.00 "E, 55d 0'0.00" N) Lower Right (140.0000000, 15.0000000) (140d 0'0.00 "E, 15d 0'0.00" N) Center (100.0000000, 35.0000000) (100d 0'0.00 "E, 35d 0'0.00" N) Origin = (60.000000000000000, 55.000000000000000) 5. Data projection: GEOGCS ["WGS 84", DATUM ["WGS_1984", SPHEROID ["WGS 84", 6378137,298.257223563, AUTHORITY ["EPSG", "7030"]], TOWGS84 [0,0,0,0,0,0,0], AUTHORITY ["EPSG", "6326"]], PRIMEM ["Greenwich", 0, AUTHORITY ["EPSG", "8901"]], UNIT ["degree", 0.0174532925199433, AUTHORITY ["EPSG", "9108"]], AUTHORITY ["EPSG", "4326"]]

0 2020-10-12

Long term vegetation index dataset of the Yellow River upstream – Spot vegetation (1998-2011)

I. Overview The long-term sequence China Vegetation Index dataset is mainly for the normalized vegetation index (NDVI), based on four bands synthesized every 10 days from 1 April 1998 to 31 December 2011 with a spatial resolution of 1 km. Spectral reflectance and 10-day maximized NDVI dataset. Ⅱ. Data processing description The VEGETATION sensor was launched by SPOT-4 in March 1998, and has received SP0T VGT data for global vegetation coverage observation since April 1998. It has a very complete and efficient image ground processing mechanism system. The VEGETATION data is mainly received by the Kiruna ground station in Sweden. The image quality monitoring center in Toulouse, France is responsible for image quality and provides related parameters (such as calibration coefficients). Finally, the image processing and archiving center of VITO Institute in Belgium Global VEGETATION data archiving and user orders. Among them, VGT-P (prototype) data products mainly provide scientific researchers with high-quality physical quantity prototype data in order to facilitate their research and development of algorithms and application models. The data undergoes strict systematic error correction and resampling into a longitude and latitude network projection, the pixel resolution is lkm, and the pixel brightness value is the reflectivity of the ground features on the top layer of the atmosphere. In addition to providing four bands of raw data, relevant auxiliary parameters such as atmospheric conditions, system information (solar zenith angle, azimuth, field of view, and reception time) and terrain data are also provided according to user needs. VGT-S (synthesis) products provide atmospheric-corrected surface reflectance data, and use multi-band synthesis techniques to obtain a normalized vegetation index (w) data set with lkm resolution. VGI-S products include the spectral reflectance and NDVI data set (s1) of four bands synthesized daily, the spectral reflectance of four bands synthesized every 10 days, and the maximum NDVI data set (S10) every 10 days to reduce cloud and The impact of BRDF, while S10 was also resampled into 4km resolution (S10.4) and 8km resolution (S10.8) datasets. VGT-S products are widely used for their high time resolution. This data set contains the spectral reflectance of four bands synthesized every 10 days and the 10-day maximized NDVI data set (S10). The pre-processing of SPOT source data includes atmospheric correction, radiation correction, and geometric correction. NDVI data with a maximum of 10 days of synthesis is generated, and the values ​​of -1 to -0.1 are set to -0.1, and then formula YDN = (JNDVI +0.1) /0.004 Convert to a YDN value from 0 to 250. Ⅲ. Data content description The long-term sequence China Vegetation Index dataset is mainly for the normalized vegetation index (NDVI), based on four bands synthesized every 10 days from 1 April 1998 to 31 December 2011 with a spatial resolution of 1 km. Spectral reflectance and 10-day maximized NDVI dataset. The SPOT-VEGETATION-NDVI data set contains .zip compressed files with time resolution from April 1, 1998 to December 31, 2011. After decompression, it is an ESRI-GRID file with a scene every 10 days. The SPO-VEGETATION-NDVI data set naming rules are: v-yymmdd, where v is the abbreviation of vegetation, yymmdd represents the date of the file, and is the main identifier that distinguishes other files. Ⅳ. Data usage description An important feature of the Vegetation Index product is that it can be converted into leaf crown biophysical parameters. Vegetation index (VI) also plays an "intermediate variable" in the acquisition of vegetation biophysical parameters (such as foliar index LAI, green shade, fAPAR, etc.). The relationship between vegetation indices and vegetation biophysical parameters is currently being studied using globally representative ground, aircraft and satellite observation datasets. These data can be used to evaluate the performance of the VI algorithm before satellite launch, and also provide the conversion coefficient between the vegetation index product and the biophysical characteristics of the leaf crown. The use of biophysical data is part of the Vegetation Index Verification Program. Vegetation index products will play a major role in several Earth Observation System (EOS) studies and are also part of global and regional biosphere model products in recent years.

0 2020-10-12

1: 1 million wetland data of Jiangsu Province

The data is clipped from "1: 1 million wetland data of China". "1: 1 million wetland data of China" mainly reflects the national marsh wetland information in the 2000s. It is expressed in geographic coordinates using the decimal degree. The main contents include: marsh wetland types, wetland water supply types, soil types, main vegetation types, geographical area, etc. Implemented the "Standard for Information Classification and Coding of Sustainable Development Information Sharing System of China". Data source of this database: 1:20 swamp map (internal version), Tibetan Plateau 1: 500,000 swamp map (internal version), swamp survey data 1: 1 million and national 1: 4 million swamp map; processing steps are: data source selection, preprocessing, digitization and encoding of marsh wetland elements, data editing processing, establishing topological relationships, edge processing, projection conversion, linking with attribute databases such as place names and obtaining attribute data.

0 2020-10-12

1:1 million wetland data of Zhejiang Province

The data is clipped from "1: 1 million wetland data of China". "1: 1 million wetland data of China" mainly reflects the national marsh wetland information in the 2000s. It is expressed in geographic coordinates using the decimal degree. The main contents include: marsh wetland types, wetland water supply types, soil types, main vegetation types, geographical area, etc. Implemented the "Standard for Information Classification and Coding of Sustainable Development Information Sharing System of China". Data source of this database: 1:20 swamp map (internal version), Tibetan Plateau 1: 500,000 swamp map (internal version), swamp survey data 1: 1 million and national 1: 4 million swamp map; processing steps are: data source selection, preprocessing, digitization and encoding of marsh wetland elements, data editing processing, establishing topological relationships, edge processing, projection conversion, linking with attribute databases such as place names and obtaining attribute data.

0 2020-10-12

Shanghai 1:1 million wetland data

The data is clipped from "1: 1 million wetland data of China". "1: 1 million wetland data of China" mainly reflects the national marsh wetland information in the 2000s. It is expressed in geographic coordinates using the decimal degree. The main contents include: marsh wetland types, wetland water supply types, soil types, main vegetation types, geographical area, etc. Implemented the "Standard for Information Classification and Coding of Sustainable Development Information Sharing System of China". Data source of this database: 1:20 swamp map (internal version), Tibetan Plateau 1: 500,000 swamp map (internal version), swamp survey data 1: 1 million and national 1: 4 million swamp map; processing steps are: data source selection, preprocessing, digitization and encoding of marsh wetland elements, data editing processing, establishing topological relationships, edge processing, projection conversion, linking with attribute databases such as place names and obtaining attribute data.

0 2020-10-12

Rail map of Heihe River Basin

Railway distribution map is the basic data in the mapping process. In order to facilitate the use of users, we compiled the railway data set of Heihe River basin according to the railway data set distributed by the National Basic Geographic Information Center, the atlas of Gansu Province compiled by the Gansu Provincial map Geographic Information Center, the sky map and Guge map published by the China Surveying and Mapping Bureau. This data basically reflects the distribution of Railways around the Heihe River basin around 2010. The national standard of data classification and coding of national basic geographic information system - Classification and code of basic land information data (GB / T 13923-92) is adopted for railway coding, and the code is five digit code (National Basic Geographic Information Center 2010).

0 2020-10-12

Elevation dataset of ASTER_DEM in the Yellow river upstream (2009)

Ⅰ. Overview This dataset is derived from the global 30m-resolution digital elevation product dataset, which is processed using the data of the first version (v1) of ASTER GDEM. Its spatial resolution is 30m. Due to the influence of clouds, lines, pits, bulges, dams or other anomalies generated by the boundary stacking, there are local anomalies in the first version of the original data of ASTER GDEM, so the digital elevation processed by ASTER GDEM v1 Data products have data anomalies in individual areas, and users need to pay attention to them during use. In addition, this data set can complement the SRTM global 90m resolution elevation dataset. Ⅱ. Data processing description ASTER GDEM is a fully automated method to process and generate ASTER archived data of 1.5 million scenes, including 1,264,118 ASTER DEM data based on independent scenes generated through stereo correlation. After de-cloud processing, residual outliers are removed, and the average value is taken as the final pixel value of ASTER GDEM object area. After correcting the remaining abnormal data, the global ASTER GDEM data was generated by 1°× 1° sharding. Ⅲ. Data content description The dataset covers the entire upper reaches of the Yellow River, and each data file name is generated based on the latitude and longitude of the lower left (southwest) Angle of the fractal geometry center. For example, the lower-left coordinate of the ASTGTM_N40E116 file is 40 degrees north latitude and 116 degrees east longitude. ASTGTM_N40E116_dem and ASTGTM_N40E116_num correspond to digital elevation model (DEM) and quality control (QA) data, respectively. Ⅳ. Data usage description ASTER GDEM data can be calculated and visualized. It has a broad application prospect in various fields, especially in mapping, surface deformation and military fields.Specifically, it mainly includes the following aspects: In scientific research, ASTER GDEM data plays an important role in geology, geophysics, seismic research, horizontal modeling, volcano monitoring and remote sensing image registration.The three-dimensional model of the ground is built by using high-precision digital terrain elevation data, which can be embedded and superimposed with the image of the ground to observe subtle changes of the earth surface. In civil and industrial applications, ASTER GDEM data can be used for civil engineering calculation, dam site selection, land use planning, etc. In communications, digital topographic data can help businesses build better broadcast towers and determine the best location of mobile phone booths.In terms of aviation safety, ASTER GDEM digital elevation data can be used to establish the enhanced aircraft landing alarm system, which greatly improves the aircraft landing safety coefficient. In the military, ASTER GDEM data is the basic information platform of C4ISR (army automatic command system), which is indispensable in the study of battlefield regional structure, combat direction, battlefield preset, combat deployment, troop concentration in projection, protection conditions, logistics support and other aspects.

0 2020-10-10

Administrative divisions of counties in Qinghai province (1992-2016)

The data set contains the Chinese name, English name and the affiliation between the districts and counties in each administrative division of Qinghai. The data were derived from the Qinghai Society and Economics Statistical Yearbook and the Qinghai Statistical Yearbook. The accuracy of the data is consistent with that of the statistical yearbook. Table 1: The table of administrative divisions in Qinghai has 5 fields. Field 1: Regions Interpretation: Chinese names of the regions Field 2: English names of the regions Interpretation: English names of the regions Field 3: Districts and counties Interpretation: Chinese names of the districts and counties Field 4: English names of the districts and counties Interpretation: English names of the districts and counties Field 5: Land area Unit: square kilometers Table 2: The table of division changes of each county has 5 fields. Field 1: Districts and counties Field 2: Year Field 3: Area Unit: square kilometers Field 4: Number of townships Field 5: Number of Village Committees

0 2020-10-09

Daily 1-km all-weather land surface temperature dataset for Western China (2003-2018) v1

Tibetan Plateau, located in southwest China, is one of the key areas affecting the Asian monsoon, and it is also an early warning area and sensitive area for global climate change. As the main parameter of surface energy balance, surface temperature represents the degree of energy and water exchange between earth and atmosphere, and is widely used in climatology, hydrology and ecology. The study of land-atmosphere interaction in Qinghai-Xizang Plateau urgently needs long time series and all-weather surface temperature data set with high temporal and spatial resolution. However, the frequent cloud cover characteristics in this area limit the use of the existing satellite thermal infrared remote sensing surface temperature data set. The generation method of this data set is an integrated method of thermal infrared and passive microwave surface temperature based on the time component decomposition model of surface temperature. This method was originally applied to Northeast China and its adjacent areas, and subsequently extended to western China including the Qinghai-Xizang Plateau. The main input data of this method are Aqua MODIS,Aqua AMSR-E,GCOM-W1 AMSR2 and other data, and the auxiliary data include leaf area index (LAI) products provided by satellite remote sensing, surface cover type data and so on. This method makes full use of the steady and unstable components of surface temperature provided by satellite thermal infrared remote sensing and passive microwave remote sensing, as well as the spatial correlation of surface temperature. The obtained all-weather surface temperature has good accuracy and image quality. The time span of the dataset is from 2003 to 2018, the time resolution is 2 times a day, and the spatial resolution is 1 km, which is expected to provide data support for related applications.

0 2020-09-30