Scientific Expedition Album of different types and thickness of unconsolidated sediments in the Yarlung Tsangpo River Basin (2020)

Focusing on the objective of estimating the total amount of unconsolidated sediments in the Yarlung Tsangpo River Basin (YTRB), we marked a series of Quaternary sections of unconsolidated sediments in the whole basin to measure their thickness. The dataset presents a collection of field photos of unconsolidated sediments obtained in the scientific expedition in YTRB in 2020. Specifically, this dataset comprises of 16 composite first–class sub basins, from upstream to downstream, including Dangque–Laiwu Tsangpo, Resu–Lierong Tsangpo, Chaiqu–Menqu, Xiongqu–Wengbuqu, Jiada Tsangpo, Pengji Tsangpo–Sakya Chongqu, Duoxiong Tsangpo, Shabu–Danapu, Nianchu River, Xiangqu–Wuyuma, Manqu, Nimuma–Lhasa River, Gonggapu–Luoburongqu, Niyang River, Yigong Tsangpo–Palong Tsangpo, and Xiangjiang River Basin. A total of 584 sites of unconsolidated sediments were marked. The atlas displays different types of unconsolidated sediments, such as alluvium, eluvium, diluvium, colluvium, eolian, lacustrine and moraine deposits, showing their spatial distribution in hillsides, foothills, floodplains, terraces, alluvial–diluvial fans and glacier fronts. With a scale of 1m benchmarking, it shows the significant difference in distribution of thickness. Generally, the thickness of the eluvium on the upper part of the hillside is about 0.3–2.5m, and the thickness of the alluvium is difficult to bottom out. The thickness of diluvium in the gentle area of the piedmont with steep slope is usually between 5 and 10 m, while the thickness of the deposit at the piedmont gully mouth is related to the scale of the pluvial fan, which can reach tens of meters thick and only 3 to 4 meters thin. From the upstream to the downstream, the thickness of alluvium varies greatly. The bedrock in the canyon area is exposed, and the thickness is almost 0. However, the thickness of alluvium in the upstream river valley is large and difficult to see the bottom interface; The maximum thickness of measured moraine deposits can reach more than 20 m. Aeolian deposits are common in the middle and upper reaches, with a wide range of thickness, ranging from a few meters to more than 20 meters. The dataset provides a wide variety of in–suit photos and measurements of unconsolidated sediments covering the whole basin, showing their characteristics of spatial distribution and genetic types, which lays a material foundation and prior knowledge for further detailed characterization and investigation of unconsolidated sediments. This work presents data for estimating the total accumulation of solid debris deposited in the YTRB, and provides a basis for assessing the risk of natural disasters related to unconsolidated sediments and formulating scientific preventive measures.

0 2022-06-08

Dataset of sedimentary characteristics of unconsolidated sediments in the Yarlung Tsangpo River Basin (2022)

This dataset includes the schematic diagrams and lithologic histograms of the measured sections of typical unconsolidated sediments in Shigatse, Yarlung Tsangpo River Basin, as well as the statistical table of measured sections. The source data comes from a two-month field measurement in Shigatse, Tibet. 16 sections of unconsolidated sediments were measured, and 128 samples were collected, including 89 cosmic nuclide samples and 39 optically stimulated luminescence samples. 16 schematic diagrams and 38 lithologic histograms were shown. The dataset primarily shows the genetic types of typical unconsolidated sediments in the Shigatse area, such as alluvium, eluvium, diluvium, colluvium, and moraine deposits. The exposed range of measured sediment thickness is about 1.6–70 m, the average thickness is about 29 m, and the horizontal distribution is 41–9059 m. The dataset demonstrates the discrete, porous, sandy and weakly cemented structural characteristics of the unconsolidated sediments with high gravel content (80%–95%), and the main gravel diameter distribution is 0.05–0.1m; sorting and roundness of alluvium are good, while the colluvial materials are poor. Fining-upward trends are commonly seen in most sections, and parallel and tabular cross-bedding are occasionally developed. Untangling the sedimentary characteristics of unconsolidated sediments in the Yarlung Tsangpo River Basin is vital to reveal the storage of fluvial solid matter across the basin, and provide important instructions for disaster warning and prevention and control of related features caused by sliding, unloading, and collapse of the ground surface. It is also of great scientific value to reveal the source-sink process and evolution of fluvial and alluvial systems in the Tibet Plateau and its surrounding basins.

0 2022-06-08

Dataset of Land cover over Tibetan Plateau From 2001 to 2020

Land cover refers to the mulch formed by the current natural and human influences on the earth's surface. It is the natural state of the earth's surface, such as forests, grasslands, farmland, soil, glaciers, lakes, swamps and wetlands, and roads. The Land Cover (LC) dataset is original from MODIS products and preprocessed by format conversion, projection and resampling. The existing format is TIFF and projection is Krasovsky_1940_Albers. The data set has a spatial resolution of 1000 meters and provides one image per year during the period from 2002 to 2020. Land cover products were classified into 17 categories defined by the International Geosphere Biosphere Programme (IGBP), including 11 categories of natural vegetation, 3 categories of land use and Mosaic, and 3 categories of non-planting land.

0 2022-06-08

Land cover data for Southeast Asia (2015)

This data is the land cover data at 30m resolution of Southeast Asia in 2015. The data format of the data is NetCDF, and the variable name is "land cover type". The data was obtained by mosaicing and extracting the From-GLC data. Several land cover types, such as snow and ice that do not exist in Southeast Asia were eliminated.The legend were reintegrated to match the new data. The data provide information of 8 land cover types: cropland, forest, grassland, shrub, wetland, water, city and bare land. The overall accuracy of the data is 71% (Gong et al., 2019). The data can provide the land cover information of Southeast Asia for hydrological models and regional climate models.

0 2022-04-18

Scientific research on the construction of Gannan West Sichuan line as a world tourism destination on the Qinghai Tibet Plateau (2021)

Through the investigation of tourist spots, tourist routes and tourist areas at different levels, form photos and video data of tourism resources, tourism services and tourism facilities of scenic spots, scenic spots, corridors and important tourism transportation nodes, tourism villages and tourism towns, record the tourism development status, find problems in tourism development, and form corresponding ideas for the construction of world tourism destinations; The data sources are UAV, tachograph and camera, mobile phone and GPS, and are divided into different folders according to scenic spots and data categories; The data has been checked for many times to ensure its authenticity; This data can provide a traceable basis for the construction of world tourism destinations on the Qinghai Tibet Plateau.

0 2022-03-18

UAV-derived raster data of the Tibetan Plateau (2021)

This dataset was captured during the field investigation of the Qinghai-Tibet Plateau in June 2021 using uav aerial photography. The data volume is 3.4 GB and includes more than 330 aerial photographs. The shooting locations mainly include roads, residential areas and their surrounding areas in Lhasa Nyingchi of Tibet, Dali and Nujiang of Yunnan province, Ganzi, Aba and Liangshan of Sichuan Province. These aerial photographs mainly reflect local land use/cover type, the distribution of facility agriculture land, vegetation coverage. Aerial photographs have spatial location information such as longitude, latitude and altitude, which can not only provide basic verification information for land use classification, but also provide reference for remote sensing image inversion of large-scale regional vegetation coverage by calculating vegetation coverage.

0 2021-12-17

The desertification risk map of the Arabian Peninsula in 2020

The gridded desertification risk data of The Arabian Peninsula in 2021 was calculated based on the environmentally sensitive area index (ESAI) methodology. The ESAI approach incorporates soil, vegetation, climate and management quality and is one of the most widely used approaches for monitoring desertification risk. Based on the ESAI framework, fourteen indicators were chosen to consider four quality domains. Each quality index was calculated from several indicator parameters. The value of each parameter was categorized into several classes, the thresholds of which were determined according to previous studies. Then, sensitivity scores between 1 (lowest sensitivity) and 2 (highest sensitivity) were assigned to each class based on the importance of the class’ role in land sensitivity to desertification and the relationships of each class to the onset of the desertification process or irreversible degradation. A more comprehensive description of how the indicators are related to desertification risk and scores is provided in the studies of Kosmas (Kosmas et al., 2013; Kosmas et al., 1999). The main indicator datasets were acquired from the Harmonized World Soil Database of the Food and Agriculture Organization, Climate Change Initiative (CCI) land cover of the European Space Agency and NOAA’s Advanced Very High Resolution Radiometer (AVHRR) data. The raster datasets of all parameters were resampled to 500m and temporally assembled to the yearly values. Despite the difficulty of validating a composite index, two indirect validations of desertification risk were conducted according to the spatial and temporal comparison of ESAI values, including a quantitative analysis of the relationship between the ESAI and land use change between sparse vegetation and grasslands and a quantitative analysis of the relationship between the ESAI and net primary production (NPP). The verification results indicated that the desertification risk data is reliable in the Arabian Peninsula in 2021.

0 2021-12-12

Geological records and photograph dataset of Quaternary sediments during the Tibetan Scientific Expedition in Yarlung Tsangpo River Basin (2019-2020)

The Quaternary sediments in the Yarlung Tsangpo River Basin (YTRB) are widely distributed and rich in types. A detailed field geological survey was carried out on the Quaternary sediments in the whole YTRB, including 16 sub-basins. The survey covers Langkazi, Jiangzi, Kangma, Sakya, Razi, Zhongba, Saga, Angren, Xietongmen, Nanmulin, Jiacha, Bomi, Motuo County, Mozhugongka and its surrounding areas. The dataset records the work log, fieldwork photos, and geological profile photos of field geological investigation on different Quaternary sediments in the YTRB. 16 profiles and 40 remote sensing interpretation markers of loose sediments were investigated. It is of great significance to find out the temporal and spatial distribution and change mechanism of Quaternary sediments in YTRB for revealing the evolution of water system, monitoring and protection of plateau ecological environment, soil and water conservation, early warning and prevention of natural disasters, and construction of major infrastructure projects.

0 2021-06-11

Vegetation environmental research data set in key areas of Asian water tower area of Qinghai Tibet Plateau (2019-2020)

This data set includes six data files, which are: (1) soil temperature and moisture data of alpine meadow elevation gradient_ Dangxiong, Tibet (2019-2020). This data is the hourly observation data of temperature and water content at different soil depths (5cm and 20cm) of the alpine meadow at 4400m, 4500m, 4650m, 4800m, 4950m and 5100m above sea level in Dangxiong, Tibet during 2019-2020. (2) Meteorological environment data of Sejila Mountain Forest line_ Linzhi, Tibet (2019), the data is the hourly meteorological environment (including wind speed, air temperature 1 m away from the surface, relative humidity 1 m away from the surface, air temperature 3 m away from the surface, relative humidity 3 m away from the surface, atmospheric pressure, total radiation, net radiation, photosynthetically active radiation, 660 nm) of the forest line of Sejila Mountain in Linzhi, Tibet in 2019 Hourly observation data of red light radiation, 730nm infrared radiation, surface temperature, atmospheric long wave radiation, surface long wave radiation, underground 5cm-20cm-60cm heat flux, underground 5cm-20cm-60cm soil temperature and humidity, rainfall and snow thickness, among which some observation data are missing due to equipment power failure in plateau area, which has been explained in the data. (3) NDVI of vegetation at major meteorological stations_ In the Qinghai Tibet Plateau (2020), NDVI survey data and average values of vegetation near 25 meteorological stations are included. (4) Land use survey data set_ Along the Sichuan Tibet Railway (2019), including 35 survey points along the Sichuan Tibet railway land use survey data, including survey time, location, latitude and longitude, altitude, slope aspect, main vegetation types and dominant species. (5) Leaf area index survey data_ The leaf area index (LAI) of main vegetation types along Sichuan Tibet Railway (2019) was measured by SunScan canopy analyzer and lai-2200. (6) Survey data of soil temperature and humidity_ Along the Sichuan Tibet Railway (2019), including 34 survey points along the Sichuan Tibet Railway: location, longitude and latitude, altitude, soil surface temperature, soil moisture at 30cm, the data were recorded as 3 repeated measurements at each survey point. The data set can be used to analyze and study the change law of vegetation environment in Qinghai Tibet Plateau.

0 2021-04-20

Data set of greenhouse land in Lhasa (2018)

The data of greenhouse land is based on Google Earth image interpretation in Lhasa city, 2018, with a spatial resolution of 0.52 meters. Most of the greenhouses in Lhasa are regular rectangles with high reflectivity, which is easy to identify. In the process of interpretation, the open fields with an area of more than 0.10 hectares and roads with a width of more than 7 meters in the greenhouse area of protected agriculture, as well as the greenhouse covered with black textile were removed, while the small empty fields and ridges between the farmland of protected agriculture were not removed. The accuracy of interpretation is 98%. The data well reflects the spatial pattern characteristics of greenhouse land in Lhasa city.

0 2021-01-18