Occurence records of birds of the fieldwork in winter Tibet, 2020

This database includes the occurrence records of birds in Qinghai-Tibet Plateau produced during the fieldtrip in December 2020 to January 2021. The geographical area mainly covers the middle-down stream of the Yarlung Zangbo River and eastern coast of Namtso lake, covering mang vallies, villiages and wetlands of Lhasa, Linzhi, Shannan, Rikaze. The information of each record is composed of species name, coordinates, date of field observation and observers.

0 2022-07-22

Atlas of birds in Qinghai-Tibet Plateau

This is a photo collection of birds in Qinghai-Tibet Plateau produced during the fieldtrip in December 2020 to January 2021. The geographical area mainly covers the middle-down stream of the Yarlung Zangbo River valley, including Lhasa, Qushui, bird species pheasants, buzzards, laughingthrushs rosefinches and accendors. The species were identified by Song Gang, Xing Jiahua, Qiao Huijie from IOZ, Yang Le, Zhou Shengling from Institute of Plateau Biology, Tibet Autonomous Region, and Yixi Duojie from Museum of Natural Science of Tibet

0 2022-06-28

Field investigation of elements (carbon, nitrogen, phosphorus, sulfur, potassium) of vegetation in the Water tower area of Qinghai Tibet Plateau and Himalayan Mountains (2020s)

Carbon, nitrogen, phosphorus, sulfur and potassium are important basic life elements of ecosystem. It plays an important role in revealing the impact of its regional variation and spatial pattern on human activities and the sustainable development of ecosystem in the future. The Qinghai Tibet Plateau has unique alpine vegetation types and rich vertical zone landforms and surface cover types. The biogeographic pattern of surface elements (carbon, nitrogen, phosphorus, sulfur, potassium) is an important manifestation of the coupling of carbon, nitrogen and water cycle processes and related mechanisms of alpine ecosystems. This dataset focuses on the distribution pattern and spatial variation of surface materials (plant leaf branch stem root and litter) in the complex ecosystem of the Water tower area of Qinghai Tibet Plateau and Himalayan Mountains, in order to provide data support for regional model simulation and ecological management.

0 2022-05-30

Landsat normalized difference water index (NDWI) products over the Tibetan Plateau (1980s-2019)

The dataset is the normalized difference water index (NDWI) products from 1970s to 2020 over the Tibetan Plateau。The dataset is producted based on Landsat surface reflectance dataset. It is calculated by the NDWI equation which use the difference ratio between the green band and NIR band to enhance the water information, and then to weaken the information of vegetation, soil, buildings and other targets.And the corresponding production of quality identification documents (QA) is also generated to identify the cloud, ice and snow.NDWI is usually used to extract surface water information effectively, therefore it is widely used in water resoureces, hydrology, forestry and agriculture.

0 2022-04-19

Dataset of measured aboveground plant biomass and remote sensing net primary productivity in desert sites on theTibet Plateau (2000-2020)

A total of 52 sample sites were selected in the desert belts of Qinghai and Tibet for field sampling of aboveground biomass of vegetation during the vegetation growing season in 2019 and 2020. At the same time, the longitude, latitude and altitude of the experimental site were recorded using handheld GPS devices. The field setting method of the quadrate is as follows: select a section with uniform vegetation. When the vegetation is relatively abundant, the quadrate is set as a 10 m x10 m square plot, and when the vegetation is relatively sparse, the quadrate is set as a 30 m x30 m square plot or a 30 m x90 m rectangular plot. 3-5 small sample boxes (1m x 1m) were randomly thrown into the set sample plot to determine the specific location of the sample. Collect plant samples by sample harvesting method: register plant species, number of plants of each species and other information in sample area of 1 square meter. All kinds of plants in the quadrate were planted and mowed on the ground, and the collected herbaceous plant samples were placed in archives and marked with species, sample site name and number, collection time and other information. They were brought back to the laboratory and dried to a constant weight in a constant temperature drying oven at 65 ℃. The dry weight of the plant samples was measured. Finally, the aboveground biomass of the vegetation was calculated. In addition, two kinds of remote sensing net primary productivity (NPP) data of the 52 sample points were extracted by the longitude and latitude of the sampling points. (1) Enhanced Vegetation Index (EVI) from 2000 to 2018, and calculated the annual Integrated Enhanced Vegetation Index (IEVI). IEVI was highly correlated with net primary productivity (NPP). Can be used as a proxy indicator of net primary productivity (He et al. 2021, Science of The Total Environment). (2) Percentage of remote sensing net primary productivity (NPP) and its quality control (QC) in 2001-2020, NPP remote sensing data from MOD17A3HGF Version 6 product (https://lpdaac.usgs.gov/products/mod17a3hgfv006/), the net photosynthetic value (the total primary productivity - keep breathing) is calculated. In the sample sites with low vegetation coverage, there may be null value (NA) of remote sensing net primary productivity.

0 2022-04-18

Fraction of Absorbed Photosynthetically Active Radiation (FPAR) across Tibetan Plateau from 1987 to 2020

Fraction of Absorbed Photosynthetically Active Radiation (FPAR) is a key physiological variable in the study of carbon cycling and is one of the basic variables to describe vegetation ecosystems. The classification results of surface vegetation types in Qinghai-Tibet Plateau region are obtained based on the Landsat reflectance data(30m spatial resolution). According to NDVI of different vegetation types, the remote sensing inversion model is constructed to produce the growing season FPAR products for each vegetation type. This product can be used as one of the parameters to calculate vegetation carbon sequestration and evaluate vegetation ecosystem status.

0 2022-04-18

Landsat surface reflectance products over the Tibetan Plateau (1980s-2019)

The dataset is the Landsat surface reflectance products from 1980s to 2019 over the Tibetan Plateau, it is the key input parameter of many surface geophysical parameters (such as leaf area index, chlorophyll and biomass). The dataset is retrieved based on Landsat level 4 products from China satellite remote sensing ground station, and it is retrived by using the atmospheric correction based on 6S model and BRDF correction model based on C-factor .The RMSE of geometric correction is less than 12m and the RMSD of surface reflectance is less than 5%. And the corresponding production of quality identification documents (QA) is also generated to identify the cloud, ice and snow.The Landsat surface reflectance play an important role in forest, water resources, climate change.

0 2022-04-18

Impervious surface product of Qinghai-Tibet Plateau with 10m resolution (2018)

Data content: The data set products include impervious surface products with a resolution of 10 meters in the Qinghai-Tibet Plateau, which can be used as a key parameter for related research on the Qinghai-Tibet Plateau ecosystem. Data source and processing method: Product inversion is mainly based on Sentinel series data, considering joint features, combining depth spatial features, long-time NDVI and other exponential features, and topographic features, and using random forest model to achieve impervious surface information extraction. Data quality: The overall accuracy is high. Data application results and prospects: The data set will be continuously updated and can be used to further clarify the impact of human activities on the ecosystem of the Qinghai-Tibet Plateau.

0 2022-04-18

Spatial distribution map of ecological carrying capacity in One Belt And One Road area in 2015

Ecological carrying capacity refers to the maximum population scale with a certain level of social and economic development that can be sustainably carried by the ecosystem without damaging the production capacity and functional integrity of the ecosystem, per person/square kilometer. Spatial distribution data of ecological carrying capacity were calculated based on NPP data simulated by VPM model and FAO production and trade data of agriculture, forestry and animal husbandry. Based on NPP data and combined with the land use data of cci-ci and biomass ratio parameters of various ecosystems, ANPP data was obtained to serve as ecological supply quantity. Based on agricultural, forestry and animal husbandry production and trade data and combined with population data, per capita ecological consumption standards of countries along the One Belt And One Road line were obtained, and then national scale data space was rasterized. The spatial rasterized ecological bearing data are obtained by dividing the ecological supply data with the per capita ecological consumption standard.

0 2022-03-10

Landsat salinity index (SI) products over the Tibetan Plateau (1980s-2019)

The dataset is the salinity index (SI) products from 1980s to 2019 over the Tibetan Plateau。The dataset is producted based on Landsat surface reflectance dataset. It is calculated by the SI equation which is based on the method that the red band and blue band can well reflect the soil salinity.And the corresponding production of quality identification documents (QA) is also generated to identify the cloud, ice and snow.SI is usually used to quantitatively evaluate the salinized soil .

0 2022-02-14