1: 1 million wetland data of Jiangsu Province

The data is clipped from "1: 1 million wetland data of China". "1: 1 million wetland data of China" mainly reflects the national marsh wetland information in the 2000s. It is expressed in geographic coordinates using the decimal degree. The main contents include: marsh wetland types, wetland water supply types, soil types, main vegetation types, geographical area, etc. Implemented the "Standard for Information Classification and Coding of Sustainable Development Information Sharing System of China". Data source of this database: 1:20 swamp map (internal version), Tibetan Plateau 1: 500,000 swamp map (internal version), swamp survey data 1: 1 million and national 1: 4 million swamp map; processing steps are: data source selection, preprocessing, digitization and encoding of marsh wetland elements, data editing processing, establishing topological relationships, edge processing, projection conversion, linking with attribute databases such as place names and obtaining attribute data.

0 2020-10-12

1:1 million wetland data of Zhejiang Province

The data is clipped from "1: 1 million wetland data of China". "1: 1 million wetland data of China" mainly reflects the national marsh wetland information in the 2000s. It is expressed in geographic coordinates using the decimal degree. The main contents include: marsh wetland types, wetland water supply types, soil types, main vegetation types, geographical area, etc. Implemented the "Standard for Information Classification and Coding of Sustainable Development Information Sharing System of China". Data source of this database: 1:20 swamp map (internal version), Tibetan Plateau 1: 500,000 swamp map (internal version), swamp survey data 1: 1 million and national 1: 4 million swamp map; processing steps are: data source selection, preprocessing, digitization and encoding of marsh wetland elements, data editing processing, establishing topological relationships, edge processing, projection conversion, linking with attribute databases such as place names and obtaining attribute data.

0 2020-10-12

Shanghai 1:1 million wetland data

The data is clipped from "1: 1 million wetland data of China". "1: 1 million wetland data of China" mainly reflects the national marsh wetland information in the 2000s. It is expressed in geographic coordinates using the decimal degree. The main contents include: marsh wetland types, wetland water supply types, soil types, main vegetation types, geographical area, etc. Implemented the "Standard for Information Classification and Coding of Sustainable Development Information Sharing System of China". Data source of this database: 1:20 swamp map (internal version), Tibetan Plateau 1: 500,000 swamp map (internal version), swamp survey data 1: 1 million and national 1: 4 million swamp map; processing steps are: data source selection, preprocessing, digitization and encoding of marsh wetland elements, data editing processing, establishing topological relationships, edge processing, projection conversion, linking with attribute databases such as place names and obtaining attribute data.

0 2020-10-12

1:1 million wetland data of Qinghai province (2000)

The data is clipped from "1: 1 million wetland data of China". "1: 1 million wetland data of China" mainly reflects the national marsh wetland information in the 2000s. It is expressed in geographic coordinates using the decimal degree. The main contents include: marsh wetland types, wetland water supply types, soil types, main vegetation types, geographical area, etc. Implemented the "Standard for Information Classification and Coding of Sustainable Development Information Sharing System of China". Data source of this database: 1:20 swamp map (internal version), Tibetan Plateau 1: 500,000 swamp map (internal version), swamp survey data 1: 1 million and national 1: 4 million swamp map; processing steps are: data source selection, preprocessing, digitization and encoding of marsh wetland elements, data editing processing, establishing topological relationships, edge processing, projection conversion, linking with attribute databases such as place names and obtaining attribute data.

0 2020-10-10

1:1 million wetland data of Gansu province (2000)

The data was compiled from "China's 1:100 million wetlands data" to get a figure of 1 million wetlands in gansu province. "China 1:100,000 wetland data" mainly reflects the information of marshes and wetlands throughout the country in the 2000s, and is represented by geographical coordinates in decimal scale. The main contents include: types of marshes and wetlands, types of water supply, types of soil, types of main vegetation, and geographical regions.The information classification and coding standard of China sustainable development information sharing system was implemented.Data source of this database: 1:20 swamp map (internal version), 1:500 000 swamp map (internal version) of qinghai-tibet plateau, 1:100 000 swamp survey data and 1:400 000 swamp map of China;The processing steps are as follows: data source selection, preprocessing, marshland element digitization and coding, data editing and processing, establishment of topological relationship, edge-to-edge processing, projection transformation, connection with attribute database such as geographical name and acquisition of attribute data.

0 2020-10-10

The global AVHRR remote sensing vegetation phenology at peturning green stage in spring (1981-2003)

This dataset is based on the long sequence (1981-2013)normalized difference vegetation index product(Version 3) of the latest NOAA Global Inventory Monitoring and Modeling System (GIMMS). First, the NDVI data products were re-sampled from the spatial resolution of 1/12 degree to 0.5 degree, then the time series of every year was smoothed by the double-logistic method, and the smoothed curvature was calculated. The maximum curvature of spring was selected as the returning green stage of the vegetation in Spring. This data can be used to analyze the temporal and spatial characteristics of the Holarctic vegetation phenology in Spring.

0 2020-09-30

The MODIS remote sensing vegetation phenology at returning green stage in spring(2001-2014)

This dataset is based on the sixth edition of the MODIS normalized difference vegetation index product (2001-2014) jointly released by NASA EOSDIS LP DAAC and the US Geological Survey USGS EROS. The NDVI has a time resolution of 16 days and a spatial resolution of 0.05 degree. First,the NDVI data products were re-sampled from the spatial resolution of 0.05 degree to 0.5 degree, then the time series of every year was smoothed by the double-logistic method, and the smoothed curvature was calculated. The maximum curvature of spring was selected as the returning green stage of the vegetation in Spring. This data can be used to analyze the temporal and spatial characteristics of the Holarctic vegetation phenology in Spring.

0 2020-09-30

1:100000 desert distribution dataset of Shule river basin (2000)

Shule River Basin is one of the three inland river basins in Hexi corridor. In recent years, with the obvious change of climate and the aggravation of human activities, the shortage of water resources and the problem of ecological environment in Shule River Basin have become increasingly prominent. It is of great significance to study the runoff change of Shule River Basin in the future climate situation for making rational water resources planning and ecological environment protection. The Shule River basin boundary is cut from "China's 1:100000 desert sand data set". Taking the 2000 TM image as the data source, it interprets, extracts, revises, and uses remote sensing and geographic information system technology to combine with the 1:100000 scale mapping requirements to carry out thematic mapping of desert, sand and gravel gobi. Data attribute table: Area (area), perimeter (perimeter), ash_ (sequence code), class (desert code), ash_id (desert code). The desert code is as follows: mobile sand 2341010, semi mobile sand 2341020, semi fixed sand 2341030, Gobi 2342000, salt alkali land 2343000. Collect and sort out the basic, meteorological, topographical and geomorphic data of Shule River Basin, and provide data support for the management of Shule River Basin.

0 2020-09-16

1:1 million wetland data of Heilongjiang Province (2000)

The data is tailored from "China's 1:1 million wetland data". "China's 1:1 million wetland data" mainly reflects the national wetland information in the 2000's, which is expressed by the decimal system of geographical coordinates. The main contents include: types of wetland, water supply types of wetland, soil types, main vegetation types, geographical areas, etc. The information classification and coding standard of China sustainable development information sharing system has been implemented. Data source of the database: 1:20 swamp map (internal version), 1:500000 swamp map of Qinghai Tibet Plateau (internal version), 1:1 million swamp survey data and 1:4 million swamp map of China; processing steps: data source selection, preprocessing, digitization and coding of swamp wetland elements, data editing and processing, establishment of topological relationship, edge connection processing, projection conversion, place name and other attribute databases Link and get property data.

0 2020-09-16

WATER: Dataset of forest structure parameter survey at the temporary forest sampling plot in the Dayekou watershed foci experimental area (2008)

The forest hydrology experimental area of Heihe River integrated remote sensing experiment includes the dense observation area of Dayekou basin and the dense observation area of Pailugou basin. Due to the concentrated distribution of the fixed sample plots in the drainage ditch basin, these sample plots lack of representativeness to the forest of the whole dayokou basin, so in June 2008, 43 temporary forest sample plots were set up in the whole dayokou basin. The data set is the ground observation data of the 43 temporary plots. In addition to the measurement and recording of stand status and site factors, Lai was also observed. The instruments used to measure each wood in the sample plot are mainly tape, DBH, flower pole, tree measuring instrument and compass. The DBH, tree height, height under branch, crown width in cross slope direction, crown width along slope direction and single tree growth were measured for each tree. WGS84 latitude and longitude coordinates of the center point of the sample plot were measured with different hand-held GPS, and the positioning error was about 5-30m. Other observation factors include: Forest Farm, slope direction, slope position, slope, soil thickness, canopy density, etc. The implementation time of these temporary sample plots is from 2 to 30 June 2008. The data set can provide ground data for the development of remote sensing inversion algorithm of forest structure parameters.

0 2020-08-20