Long-term (1982-2018) global gross primary production dataset based on NIRv

Vegetation photosynthesis is a key component of carbon cycle in terrestrial ecosystem. Simulating photosynthesis activities on different spatial and temporal scales is helpful to solve the problem of land carbon budget, and it is also an important way to accurately predict the direction of future climate change and an important prerequisite for scientific understanding of the supporting capacity of terrestrial ecosystem for sustainable development of human society. At present, although a variety of algorithms and products for estimating the total primary productivity (GPP) of ecosystems have been relatively mature, there are still great differences and uncertainties in the global GPP products of long time series, especially the trend of their temporal variation. Sunlight induced chlorophyll fluorescence (SIF) remote sensing is a new type of remote sensing technology developed rapidly in recent years. The close relationship between SIF and photosynthetic process makes it an effective probe to indicate the changes of vegetation photosynthesis and a powerful means to monitor GPP. A new vegetation index (Nirv) based on remote sensing data, namely the product of normalized vegetation index (NDVI) and near-infrared reflectance, is highly related to remote sensing SIF products; based on mechanism derivation, model simulation and analysis of remote sensing data, Nirv can be used as an alternative product of SIF to estimate global GPP. Therefore, on the basis of analyzing the feasibility of Nirv as SIF and GPP probe, this data set generates the global high-resolution long-time series GP data from 1982 to 2018 based on the AVHRR data of remote sensing and hundreds of flux stations around the world, and analyzes the temporal and spatial variation trend of global GPP. The resolution is month, 0.05 degree, and the data unit is gcm-2 The annual average global GPP is about 128.3 ± 4.0 PG Cyr − 1, and the root mean square error (RMSE) of the data is 1.95 gcm-2 D-1. The data set can be used to study global climate change and carbon cycle.

0 2020-10-28

Land Surface Soil Moisture Dataset of SMAP Time-Expanded Daily 0.25°×0.25° over Qinghai-Tibet Plateau Area (SMsmapTE, V1)

This dataset contains land surface soil moisture products with SMAP time-expanded daily 0.25°×0.25°in Qinghai-Tibet Plateau Area. The dataset was produced based on the Random Forest method by utilizing passive microwave brightness temperature along with some auxiliary datasets. The temporal resolution of the product in 1980,1985,1990,1995 and 2000 is monthly, by using SMMR, SSM/I, and SSMIS brightness temperature from 19 GHz V/H and 37 GHz V channels. The temporal resolution of the product between June 20, 2002 and Dec 30, 2018 is daily, by utilizing AMSR-E and AMSR2 brightness temperature from 6.925 GHz V/H, 10.65 GHz V/H, and 36.5 GHz V channels. The auxiliary datasets participating in the Random Forest training include the IGBP land cover type, GTOPO30 DEM, and Lat/Lon information.

0 2020-10-26

Daily 0.01°×0.01° Land Surface Soil Moisture Dataset of the Qinghai-Tibet Plateau (SMHiRes, V1)

This dataset contains daily 0.01°×0.01° land surface soil moisture products in the Qinghai-Tibet Plateau in 2005, 2010, 2015, 2017, and 2018. The dataset was produced by utilizing the multivariate statistical regression model to downscale the “SMAP Time-Expanded 0.25°×0.25° Land Surface Soil Moisture Dataset in the Qinghai-Tibet Plateau (SMsmapTE, V1)”. The auxiliary datasets participating in the multivariate statistical regression include GLASS Albedo/LAI/FVC, 1km all-weather surface temperature data in western China by Ji Zhou, and Lat/Lon information.

0 2020-10-26

Global near-surface soil freeze/thaw state (2002-2019)

The freezing / thawing state of near surface soil represents the dormancy and activity of land surface processes. This alternation of freezing and thawing phases can cause a series of complex surface process trajectory mode mutations, and affect the water cycle processes such as soil hydrothermal characteristics, surface runoff and groundwater recharge, and also affect climate change through water and energy cycle mechanism. This data set is based on AMSR-E and amsr2 passive microwave data, using discriminant algorithm to prepare global near earth surface freeze-thaw state (spatial resolution: 0.25 °; time span: 2002-2019), data storage type: 8-bit unsigned integer (file type:. HDF5) 5) Among them: 0: water body and missing data; 1: frozen soil; 2: thawed soil; 3: precipitation; 15: perennial snow and ice sheet. It can be used to analyze the spatial distribution and trend of the global freeze-thaw cycle, such as the start / end date, freezing / thawing duration, freezing range and other indicators. It can provide data support for understanding the interaction mechanism between land surface freeze-thaw cycle and water and energy exchange process under the background of global change. For detailed naming and missing of data, please refer to the data description.

0 2020-10-21

MODIS daily cloud-free snow cover area product for Sanjiangyuan from 2000 to 2018

The dataset was produced based on MODIS data. Parameters and algorithm were revised to be suitable for the land cover type in the Three-River-Source Regions. By using the Markov de-cloud algorithm, SSM/I snow water equivalent data was fused to the result. Finally, high accuracy daily de-cloud snow cover data was produced. The data value is 0(no snow) or 1(snow). The spatial resolution is 500m, the time period is from 2000-2-24 to 2018-12-31. Data format is geotiff, Arcmap or python+GDAL were recommended to open and process the data.

0 2020-10-13

MODIS NDVI based phenology for the Three-River-Source National Park from 2001 to 2018

This dataset is land surface phenology estimated from 16 days composite MODIS NDVI product (MOD13Q1 collection6) in the Three-River-Source National Park from 2001 to 2018. The spatial resolution is 250m. The variables include Start of Season (SOS) and End of Season (EOS). Two phenology estimating methods were used to MOD13Q1, polynomial fitting based threshold method and double logistic function based inflection method. There are 4 folders in the dataset. CJYYQ_phen is data folder for source region of the Yangtze River in the national park. HHYYQ_phen is data folder for source region of Yellow River in the national park. LCJYYQ_phen is data folder for source region of Lancang River in the national park. SJY_phen is data folder for the whole Three-River-Source region. Data format is geotif. Arcmap or Python+GDAL are recommended to open and process the data.

0 2020-10-13

GF-1 NDVI dataset in Maduo County (2016)

This is the vegetation index (NDVI) for Maduo County in July, August and September of 2016. It is obtained through calculation based on the multispectral data of GF-1. The spatial resolution is 16 m. The GF-1 data are processed by mosaicking, projection coordinating, data subsetting and other methods. The maximum synthesis is then conducted every month in July, August, and September.

0 2020-10-13

AMSR-E/aqua daily gridded brightness temperatures of China

This dataset includes passive microwave remote sensing brightness temperatures data for longitude and latitude projections and 0.25 degree resolution from 2002 to 2008 in China. 1. Data processing process: NSIDC produces AMSR-E gridded brightness temperature data by interpolating AMSR-E data (6.9 GHz, 10.7 GHz, 18.7 GHz, 23.8 GHz, 36.5 GHz, and 89.0 GHz) to the output grids from swath space using an Inverse Distance Squared (ID2) method. 2. Data format: Brightness temperature files: two-byte unsigned integers, little-endian byte order Time files: two-byte signed integers, little-endian byte order 3. Data naming: ID2rx-AMSRE-aayyyydddp.vnn.ccc (China-ID2r1-AMSRE-D.252002170A.v03.06V) ID2 Inverse Distance Squared r1 Resolution 1 swath input data AMSRE Identifies this an AMSR-E file D.25 Identifies this as a quarter degree file yyyy Four-digit year ddd Three-digit day of year p Pass direction (A = ascending, D = descending) vnn Gridded data version number (for example, v01, v02, v03) ccc AMSR-E channel indicator: numeric frequency (06, 10, 18, 23, 36, or 89) followed by polarization (H or V) 4. Cutting range: Corner Coordinates: Upper Left (60.0000000, 55.0000000) (60d 0'0.00 "E, 55d 0'0.00" N) Lower Left (60.0000000, 15.0000000) (60d 0'0.00 "E, 15d 0'0.00" N) Upper Right (140.0000000, 55.0000000) (140d 0'0.00 "E, 55d 0'0.00" N) Lower Right (140.0000000, 15.0000000) (140d 0'0.00 "E, 15d 0'0.00" N) Center (100.0000000, 35.0000000) (100d 0'0.00 "E, 35d 0'0.00" N) Origin = (60.000000000000000, 55.000000000000000) 5. Data projection: GEOGCS ["WGS 84", DATUM ["WGS_1984", SPHEROID ["WGS 84", 6378137,298.257223563, AUTHORITY ["EPSG", "7030"]], TOWGS84 [0,0,0,0,0,0,0], AUTHORITY ["EPSG", "6326"]], PRIMEM ["Greenwich", 0, AUTHORITY ["EPSG", "8901"]], UNIT ["degree", 0.0174532925199433, AUTHORITY ["EPSG", "9108"]], AUTHORITY ["EPSG", "4326"]]

0 2020-10-12

Long term vegetation SPOT vegetation index dataset of the QinghaiLake River Basin (1998-2008)

The VEGETATION sensor sponsored by the European Commission was launched by SPOT-4 in March 1998. Since April 1998, SPOTVGT data for global vegetation coverage observation has been received by Kiruna ground station in Sweden. The image quality monitoring center in Toulouse, France is responsible for image quality and provides relevant parameters (such as calibration coefficient number). Finally, the Belgian flemish institute for technological research (Vito)VEGETATION processing Centre (CTIV) is responsible for preprocessing into global data of 1km per day. Pretreatment includes atmospheric correction, radiation correction, geometric correction, production of 10 days to maximize the synthesized NDVI data, setting the value of -1 to -0.1 to -0.1, and then converting to the DN value of 0-250 through the formula DN= (NDVI+0.1)/0.004. The dataset is a long-time series vegetation index dataset of Qinghai Lake Basin, which is mainly aimed at normalized difference vegetation index (NDVI). It includes spectral reflectance of four bands synthesized every 10 days from 1998 to 2008 and maximum NDVI for 10 days, with a spatial resolution of 1km and a temporal resolution of 10 days.

0 2020-10-10

A long term spatially and temporally consistent global daily soil moisture dataset derived from AMSR-E/2 (2002-2019)

This dataset contains 18 years (2002-2019) global spatio-temporal consistent surface soil moisture . The resolution is 36 km at daily scale, and the data unit is m3 / m3. This dataset adopts the soil moisture neural network retrieval algorithm developed by Yao et al. (2017). This study transfers the merits of SMAP to AMSR-E/2 through using an Artificial Neural Network (ANN) in which SMAP standard SSM products serve as training targets with AMSR-E/2 brightness temperature (TB) as input. Finally, long term soil moisture data are output. The accuracy is about 5% volumetric water content. (evaluation accuracy of 14 dense ground network globally.)

0 2020-10-09