Land Surface Temperature Dataset of Typical Stations in Middle Reaches of Heihe River Basin Based on UAV Remote Sensing(2019-07-09,V1)

Land surface temperature is a critical parameter in land surface energy balance. This dataset provides the monthly land surface temperature of UAV remote sensing for typical ground stations in the middle reaches of Heihe River basin from July to September in 2019. The land surface temperature retrieval algorithm is an improved single-channel algorithm, which was applied to the land surface brightness temperature data obtained by the UAV thermal infrared remote sensing sensor, and finally the land surface temperature data with a spatial resolution of 0.4m was obtained.

0 2020-07-31

NDVI Dataset of Typical Stations in Midstream of Heihe River Basin Based on UAV Remote Sensing (2019, V1)

NDVI is a very important vegetation index for the research of vegetation growth and land cover classification. This dataset provides a monthly land surface albedo of UAV remote sensing with a spatial resolution of 0.2 m. It measured in the midstream of Heihe River Basin during the vegetation growth season over typical stations in 2019. The pix4D mapper software was used for image mosaic and NDVI calculation.

0 2020-07-31

Qilian Mountains integrated observatory network: Dataset of Shiyanghe integrated observatory network (Phenology camera observation data set of Xiyinghe Station, 2019)

The dataset contains the phenological camera observation data of the Xiyinghe station in the midstream of Shiyanghe integrated observatory network from January 1 to December 31, 2019. The instrument was developed and data processed by Beijing Normal University. The phenomenon camera integrates data acquisition and data transmission functions. The camera captures data by look-downward with a resolution of 1280×720. For the calculation of the greenness index and phenology, the relative greenness index (GCC, Green Chromatic Coordinate, calculated by GCC=G/(R+G+B)) needs to be calculated according to the region of interest, then the invalid value filling and filtering smoothing are performed, and finally the key phenological parameters are determined according to the growth curve fitting, such as the growth season start date, Peak, growth season end, etc. For coverage, first, select images with less intense illumination, then divide the image into vegetation and soil, calculate the proportion of vegetation pixels in each image in the calculation area. After the time series data is extracted, the original coverage data is smoothed and filtered according to the time window specified by the user, and the filtered result is the final time series coverage. This data set includes relative greenness index (Gcc), phenological period and coverage (Fc).

0 2020-07-10