Qilian Mountains integrated observatory network: Dataset of Heihe integrated observatory network (automatic weather station of mixed forest station, 2021)

This dataset includes data recorded by the Heihe integrated observatory network obtained from the automatic weather station (AWS) at the Sidaoqiao mixed forest station from January 1 to December 31, 2021. The site (101.134° E, 41.990° N) was located on a tamarix and populous forest (Tamarix chinensis Lour. and Populus euphratica Olivier.) surface in the Sidaoqiao, Dalaihubu Town, Ejin Banner, Inner Mongolia Autonomous Region. The elevation is 874 m. The installation heights and orientations of different sensors and measured quantities were as follows: air temperature and humidity profile (28 m, north), wind speed and direction profile (28 m, north), air pressure (in tamper box), rain gauge (28 m, south), four-component radiometer (24 m, south), two infrared temperature sensors (24 m, south, vertically downward), two photosynthetically active radiation (24 m, south, one vertically upward and one vertically downward), soil heat flux (HFP01; 3 duplicates, -0.06 m), soil temperature profile (0, -0.02, -0.04, -0.1, -0.2, -0.4, -0.6, -1.0, -1.6, -2.0, -2.4 m), and soil moisture profile (-0.02, -0.04, -0.1, -0.2, -0.4, -0.6, -1.0, -1.6, -2.0, -2.4 m). The observations included the following: air temperature and humidity (Ta_28 m; RH_28 m) (℃ and %, respectively), wind speed (Ws_28 m) (m/s), wind direction (WD_28 m) (°), air pressure (press) (hpa), precipitation (rain) (mm), four-component radiation (DR, incoming shortwave radiation; UR, outgoing shortwave radiation; DLR_Cor, incoming longwave radiation; ULR_Cor, outgoing longwave radiation; Rn, net radiation) (W/m^2), infrared temperature (IRT_1 and IRT_2) (℃), photosynthetically active radiation of upward and downward (PAR_up and PAR_down) (μmol/ (s m^-2)), soil heat flux (Gs_1, Gs_2 and Gs_3) (W/m^2), soil temperature (Ts_0 cm, Ts_2 cm, Ts_4 cm, Ts_20 cm, Ts_40 cm, Ts_60 cm, Ts_100, Ts_160, Ts_200, Ts_240 cm) (℃), and soil moisture (Ms_2 cm, Ms_4 cm, Ms_10 cm, Ms_20 cm, Ms_40 cm, Ms_60 cm, Ms_100, Ms_160, Ms_200, Ms_240 cm) (%, volumetric water content). The data processing and quality control steps were as follows: (1) The AWS data were averaged over intervals of 10 min for a total of 144 records per day. The missing data were denoted by -6999. (2) Data in duplicate records were rejected. (3) Unphysical data were rejected. (4) The data marked in red are problematic data. (5) The format of the date and time was unified, and the date and time were collected in the same column, for example, date and time: 2019-9-10 10:30. (6) Finally, the naming convention was AWS+ site no. Moreover, suspicious data were marked in red. For more information, please refer to Liu et al. (2018) (for sites information), Liu et al. (2011) for data processing) in the Citation section.

0 2022-05-30

Qilian Mountains integrated observatory network: Dataset of Heihe integrated observatory network (eddy covariance system of mixed forest station, 2021)

This dataset contains the flux measurements from the mixed forest station eddy covariance system (EC) in the downstream reaches of the Heihe integrated observatory network from January 1 to December 31 in 2021. The site (101.1335° E, 41.9903° N) was located in the Sidaoqiao County, in Ejina Banner in Inner Mongolia Autonomous Region . The elevation is 874 m. The EC was installed at a height of 3.2 m, and the sampling rate was 10 Hz. The sonic anemometer faced north, and the separation distance between the sonic anemometer and the CO2/H2O gas analyzer (CSAT3B & Li7500DS) was 0.17 m. The raw data acquired at 10 Hz were processed using the Eddypro post-processing software, including the spike detection, lag correction of H2O/CO2 relative to the vertical wind component, sonic virtual temperature correction, coordinate rotation (2-D rotation), corrections for density fluctuation (Webb-Pearman-Leuning correction), and frequency response correction. The EC data were subsequently averaged over 30 min periods. The observation data quality was divided into three classes according to the quality assessment method of stationarity (Δst) and the integral turbulent characteristics test (ITC): class 1-3 (high quality), class 4-6 (good), class 7-8 (poor, better than gap filling data), class9 (rejected). In addition to the above processing steps, the half-hourly flux data were screened in a four-step procedure: (1) data from periods of sensor malfunction were rejected; (2) data collected before or after 1 h of precipitation were rejected; (3) incomplete 30 min data were rejected when the missing data constituted more than 10% of the 30 min raw record. There were 48 records per day, and the missing data were replaced with -6999. Suspicious data were marked in red. The water vapor density data were rejected when the negative values occurred. CO2 data were missing due to the sensor malfunction after November 3. The released data contained the following variables: data/time, wind direction (Wdir, °), wind speed (Wnd, m/s), the standard deviation of the lateral wind (Std_Uy, m/s), virtual temperature (Tv, ℃), H2O mass density (H2O, g/m3), CO2 mass density (CO2, mg/m3), friction velocity (ustar, m/s), stability (L), sensible heat flux (Hs, W/m2), latent heat flux (LE, W/m2), carbon dioxide flux (Fc, mg/ (m2s)), quality assessment of the sensible heat flux (QA_Hs), quality assessment of the latent heat flux (QA_LE), and quality assessment of the carbon flux (QA_Fc). In this dataset, the time of 0:30 corresponds to the average data for the period between 0:00 and 0:30; the data were stored in *.xls format. Detailed information can be found in the suggested references. For more information, please refer to Liu et al. (2018) (for sites information), Liu et al. (2011) for data processing) in the Citation section.

0 2022-05-20

Qilian Mountains integrated observatory network: Dataset of Heihe integrated observatory network (leaf area index of Mixed forest station, 2020)

This dataset contains the LAI measurements from the Sidaoqiao in the downstream of the Heihe integrated observatory network from July 26 to October 20 in 2020. The site was located in Ejina Banner in Inner Mongolia Autonomous Region. The elevation is 870 m. There are 1 observation samples, around Mixed forest station (101.1335E, 41.9903N), which is about 30 m×30 m in size. Five sub-canopy nodes and one above-canopy node are arranged in each sample. The data is obtained from LAINet measurements; the four-steps are performed to obtain LAI: the raw data is light quantum (level 0); the daily LAI can be obtained using the software LAInet (level 1); further the invalid and null values are screened and using the 7 days moving averaged method to obtain the processed LAI (level 2); for the multi LAINet nodes observation, the averaged LAI of the nodes area is the final LAI (level 3). The released data are the post processed LAI products and stored using *.xls format. For more information, please refer to Liu et al. (2018) (for sites information), Qu et al. (2014) for data processing) in the Citation section.

0 2021-07-08

Qilian Mountains integrated observatory network: Dataset of Heihe integrated observatory network (eddy covariance system of mixed forest station, 2020)

This dataset contains the flux measurements from the mixed forest station eddy covariance system (EC) in the downstream reaches of the Heihe integrated observatory network from January 1 to December 31 in 2020. The site (101.1335° E, 41.9903° N) was located in the Sidaoqiao County, in Ejina Banner in Inner Mongolia Autonomous Region . The elevation is 874 m. The EC was installed at a height of 3.2 m, and the sampling rate was 10 Hz. The sonic anemometer faced north, and the separation distance between the sonic anemometer and the CO2/H2O gas analyzer (CSAT3B & Li7500DS) was 0.17 m. The raw data acquired at 10 Hz were processed using the Eddypro post-processing software, including the spike detection, lag correction of H2O/CO2 relative to the vertical wind component, sonic virtual temperature correction, coordinate rotation (2-D rotation), corrections for density fluctuation (Webb-Pearman-Leuning correction), and frequency response correction. The EC data were subsequently averaged over 30 min periods. The observation data quality was divided into three classes according to the quality assessment method of stationarity (Δst) and the integral turbulent characteristics test (ITC): class 1-3 (high quality), class 4-6 (good), class 7-8 (poor, better than gap filling data), class9 (rejected). In addition to the above processing steps, the half-hourly flux data were screened in a four-step procedure: (1) data from periods of sensor malfunction were rejected; (2) data collected before or after 1 h of precipitation were rejected; (3) incomplete 30 min data were rejected when the missing data constituted more than 10% of the 30 min raw record. There were 48 records per day, and the missing data were replaced with -6999. Suspicious data were marked in red. The water vapor density data were rejected when the negative values occurred. Data during May 8 to 20, 2020 were missing due to instrument malfunction. The released data contained the following variables: data/time, wind direction (Wdir, °), wind speed (Wnd, m/s), the standard deviation of the lateral wind (Std_Uy, m/s), virtual temperature (Tv, ℃), H2O mass density (H2O, g/m3), CO2 mass density (CO2, mg/m3), friction velocity (ustar, m/s), stability (L), sensible heat flux (Hs, W/m2), latent heat flux (LE, W/m2), carbon dioxide flux (Fc, mg/ (m2s)), quality assessment of the sensible heat flux (QA_Hs), quality assessment of the latent heat flux (QA_LE), and quality assessment of the carbon flux (QA_Fc). In this dataset, the time of 0:30 corresponds to the average data for the period between 0:00 and 0:30; the data were stored in *.xls format. Detailed information can be found in the suggested references. For more information, please refer to Liu et al. (2018) (for sites information), Liu et al. (2011) for data processing) in the Citation section.

0 2021-06-09

Qilian Mountains integrated observatory network: Dataset of Heihe integrated observatory network (automatic weather station of mixed forest station, 2020)

This dataset includes data recorded by the Heihe integrated observatory network obtained from the automatic weather station (AWS) at the Sidaoqiao mixed forest station from January 1 to December 31, 2020. The site (101.134° E, 41.990° N) was located on a tamarix and populous forest (Tamarix chinensis Lour. and Populus euphratica Olivier.) surface in the Sidaoqiao, Dalaihubu Town, Ejin Banner, Inner Mongolia Autonomous Region. The elevation is 874 m. The installation heights and orientations of different sensors and measured quantities were as follows: air temperature and humidity profile (28 m, north), wind speed and direction profile (28 m, north), air pressure (in tamper box), rain gauge (28 m, south), four-component radiometer (24 m, south), two infrared temperature sensors (24 m, south, vertically downward), two photosynthetically active radiation (24 m, south, one vertically upward and one vertically downward), soil heat flux (HFP01; 3 duplicates, -0.06 m), soil temperature profile (0, -0.02, -0.04, -0.1, -0.2, -0.4, -0.6, -1.0, -1.6, -2.0, -2.4 m), and soil moisture profile (-0.02, -0.04, -0.1, -0.2, -0.4, -0.6, -1.0, -1.6, -2.0, -2.4 m). The observations included the following: air temperature and humidity (Ta_28 m; RH_28 m) (℃ and %, respectively), wind speed (Ws_28 m) (m/s), wind direction (WD_28 m) (°), air pressure (press) (hpa), precipitation (rain) (mm), four-component radiation (DR, incoming shortwave radiation; UR, outgoing shortwave radiation; DLR_Cor, incoming longwave radiation; ULR_Cor, outgoing longwave radiation; Rn, net radiation) (W/m^2), infrared temperature (IRT_1 and IRT_2) (℃), photosynthetically active radiation of upward and downward (PAR_up and PAR_down) (μmol/ (s m^-2)), soil heat flux (Gs_1, Gs_2 and Gs_3) (W/m^2), soil temperature (Ts_0 cm, Ts_2 cm, Ts_4 cm, Ts_10 cm, Ts_20 cm, Ts_40 cm, Ts_60 cm, Ts_100, Ts_160, Ts_200, Ts_240 cm) (℃), and soil moisture (Ms_2 cm, Ms_4 cm, Ms_10 cm, Ms_20 cm, Ms_40 cm, Ms_60 cm, Ms_100, Ms_160, Ms_200, Ms_240 cm) (%, volumetric water content). The data processing and quality control steps were as follows: (1) The AWS data were averaged over intervals of 10 min for a total of 144 records per day. The missing data were denoted by -6999. Due to the power loss, there were occasionally data missing in January. Due to the sensor malfunction, the wind direction and soil temperature at 240 cm depth during January to June and soil temperature at 10 cm depth were missing. (2) Data in duplicate records were rejected. (3) Unphysical data were rejected. (4) The data marked in red are problematic data. (5) The format of the date and time was unified, and the date and time were collected in the same column, for example, date and time: 2020-9-10 10:30. (6) Finally, the naming convention was AWS+ site no. Moreover, suspicious data were marked in red. For more information, please refer to Liu et al. (2018) (for sites information), Liu et al. (2011) for data processing) in the Citation section.

0 2021-05-31

Qilian Mountains integrated observatory network: Dataset of Heihe integrated observatory network (eddy covariance system of mixed forest station, 2018)

This dataset contains the flux measurements from the mixed forest station eddy covariance system (EC) in the downstream reaches of the Heihe integrated observatory network from January 1 to December 31 in 2018. The site (101.1335° E, 41.9903° N) was located in the Sidaoqiao County, in Ejina Banner in Inner Mongolia Autonomous Region . The elevation is 874 m. The EC was installed at a height of 3.2 m, and the sampling rate was 10 Hz. The sonic anemometer faced north, and the separation distance between the sonic anemometer and the CO2/H2O gas analyzer (CSAT3&Li7500) was 0.17 m. The raw data acquired at 10 Hz were processed using the Eddypro post-processing software, including the spike detection, lag correction of H2O/CO2 relative to the vertical wind component, sonic virtual temperature correction, coordinate rotation (2-D rotation), corrections for density fluctuation (Webb-Pearman-Leuning correction), and frequency response correction. The EC data were subsequently averaged over 30 min periods. The observation data quality was divided into three classes according to the quality assessment method of stationarity (Δst) and the integral turbulent characteristics test (ITC): class 1-3 (high quality), class 4-6 (good), class 7-8 (poor, better than gap filling data), class9 (rejected). In addition to the above processing steps, the half-hourly flux data were screened in a four-step procedure: (1) data from periods of sensor malfunction were rejected; (2) data collected before or after 1 h of precipitation were rejected; (3) incomplete 30 min data were rejected when the missing data constituted more than 10% of the 30 min raw record. There were 48 records per day, and the missing data were replaced with -6999. Suspicious data were marked in red. Data during February 7 to 11, 2018 were missing due to the power loss. The released data contained the following variables: data/time, wind direction (Wdir, °), wind speed (Wnd, m/s), the standard deviation of the lateral wind (Std_Uy, m/s), virtual temperature (Tv, ℃), H2O mass density (H2O, g/m3), CO2 mass density (CO2, mg/m3), friction velocity (ustar, m/s), stability (L), sensible heat flux (Hs, W/m2), latent heat flux (LE, W/m2), carbon dioxide flux (Fc, mg/ (m2s)), quality assessment of the sensible heat flux (QA_Hs), quality assessment of the latent heat flux (QA_LE), and quality assessment of the carbon flux (QA_Fc). In this dataset, the time of 0:30 corresponds to the average data for the period between 0:00 and 0:30; the data were stored in *.xls format. Detailed information can be found in the suggested references. For more information, please refer to Liu et al. (2018) (for sites information), Liu et al. (2011) for data processing) in the Citation section.

0 2020-07-25

Qilian Mountains integrated observatory network: Dataset of Heihe integrated observatory network (automatic weather station of mixed forest station, 2018)

This dataset includes data recorded by the Heihe integrated observatory network obtained from the automatic weather station (AWS) at the Sidaoqiao mixed forest station from January 1 to December 31, 2018. The site (101.134° E, 41.990° N) was located on a tamarix and populous forest (Tamarix chinensis Lour. and Populus euphratica Olivier.) surface in the Sidaoqiao, Dalaihubu Town, Ejin Banner, Inner Mongolia Autonomous Region. The elevation is 874 m. The installation heights and orientations of different sensors and measured quantities were as follows: air temperature and humidity profile (28 m, north), wind speed and direction profile (28 m, north), air pressure (in tamper box), rain gauge (28 m, south), four-component radiometer (24 m, south), two infrared temperature sensors (24 m, south, vertically downward), two photosynthetically active radiation (24 m, south, one vertically upward and one vertically downward), soil heat flux (HFP01; 3 duplicates, -0.06 m), soil temperature profile (0, -0.02, -0.04, -0.1, -0.2, -0.4, -0.6, -1.0, -1.6, -2.0, -2.4 m), and soil moisture profile (-0.02, -0.04, -0.1, -0.2, -0.4, -0.6, -1.0, -1.6, -2.0, -2.4 m). The observations included the following: air temperature and humidity (Ta_28 m; RH_28 m) (℃ and %, respectively), wind speed (Ws_28 m) (m/s), wind direction (WD_28 m) (°), air pressure (press) (hpa), precipitation (rain) (mm), four-component radiation (DR, incoming shortwave radiation; UR, outgoing shortwave radiation; DLR_Cor, incoming longwave radiation; ULR_Cor, outgoing longwave radiation; Rn, net radiation) (W/m^2), infrared temperature (IRT_1 and IRT_2) (℃), photosynthetically active radiation of upward and downward (PAR_up and PAR_down) (μmol/ (s m^-2)), soil heat flux (Gs_1, Gs_2 and Gs_3) (W/m^2), soil temperature (Ts_0 cm, Ts_2 cm, Ts_4 cm, Ts_10 cm, Ts_20 cm, Ts_40 cm, Ts_60 cm, Ts_100, Ts_160, Ts_200, Ts_240 cm) (℃), and soil moisture (Ms_2 cm, Ms_4 cm, Ms_10 cm, Ms_20 cm, Ms_40 cm, Ms_60 cm, Ms_100, Ms_160, Ms_200, Ms_240 cm) (%, volumetric water content). The data processing and quality control steps were as follows: (1) The AWS data were averaged over intervals of 10 min for a total of 144 records per day. The missing data were denoted by -6999. Due to the power loss of datalogger, there were occasionally data missing during January 1 to 9, and November 10 to December 14; (2) Data in duplicate records were rejected. (3) Unphysical data were rejected. (4) The data marked in red are problematic data. (5) The format of the date and time was unified, and the date and time were collected in the same column, for example, date and time: 2018-9-10 10:30. (6) Finally, the naming convention was AWS+ site no. Moreover, suspicious data were marked in red. For more information, please refer to Liu et al. (2018) (for sites information), Liu et al. (2011) for data processing) in the Citation section.

0 2020-07-25

Qilian Mountains integrated observatory network: Dataset of Heihe integrated observatory network (phenology camera observation data set of mixed forest superstation, 2018)

The dataset contains phenological camera observation data collected at the Arou Superstation in the midstream of the Heihe integrated observatory network from June 13 to November 16, 2018. The instrument was developed with data processed by Beijing Normal University. The phenomenon camera integrates data acquisition and data transmission functions. The camera captures high-quality data with a resolution of 1280×720 by looking-downward. The calculation of the greenness index and phenology are following 3 steps: (1) calculate the relative greenness index (GCC, Green Chromatic Coordinate, calculated by GCC=G/(R+G+B)) according to the region of interest, (2) perform gap-filling for the invalid values, filtering and smoothing, and (3) determine the key phenological parameters according to the growth curve fitting (such as the growth season start date, Peak, growth season end, etc.) There are also 3 steps for coverage data processing: (1) select images with less intense illumination, (2) divide the image into vegetation and soil, and (3) calculate the proportion of vegetation pixels in each image in the calculation area. After the time series data is extracted, the original coverage data is smoothed and filtered according to the time window specified by the user, and the filtered result is the final time series coverage. This data set includes relative greenness index (Gcc). Please refer to Liu et al. (2018) for sites information in the Citation section.

0 2020-07-25

HiWATER: Dataset of hydrometeorological observation network (an automatic weather station of Sidaoqiao mixed forest station, 2017)

The data set contains meteorological element observation data from January 1, 2017 to December 31, 2017 at the downstream mixed forest station of heihe hydrometeorological observation network.The station is located at sidao bridge, dalaihubu town, ejin banner, Inner Mongolia.The longitude and latitude of the observation point are 101.1335e, 41.9903n and 874m above sea level.The air temperature and relative humidity sensors are located at 28m, facing due north.The barometer is installed in the anti-skid box on the ground;Tilting bucket rain gauge installed at 28m;The wind speed and direction sensor is located at 28m, facing due north.The four-component radiometer is installed at 24m, facing due south;Two infrared thermometers are installed at 24m, facing due south and the probe facing vertically downward.Two photosynthetically active radiators were installed at a position of 24m, facing due south, with one probe vertically upward and one probe vertically downward.The soil temperature probe is buried at 0cm of the surface and 2cm, 4cm, 10cm, 20cm, 40cm, 60cm, 100cm, 160cm, 200cm and 240cm underground, 2m to the south of the meteorological tower.The soil water probe is buried 2cm, 4cm, 10cm, 20cm, 40cm, 60cm, 100cm, 160cm, 200cm and 240cm underground, 2m to the south of the meteorological tower.The soil heat flow plates (3 pieces) are buried in the ground 6cm underground, 2m to the south of the meteorological tower. Observation items are: air temperature and humidity (Ta_28m, RH_28m) (unit: c, percentage), pressure (Press) (unit: hundred mpa), precipitation (Rain) (unit: mm), wind speed (WS_28m) (unit: m/s), wind (WD_28m) (unit: degrees), the radiation of four component (DR, UR, DLR_Cor, ULR_Cor, Rn) (unit: watts per square meter), the surface radiation temperature (IRT_1, IRT_2) (unit:C), soil heat flux (Gs_1, Gs_2, Gs_3) (in watts/m2), soil temperature (Ts_0cm, Ts_2cm, Ts_4cm, Ts_10cm, Ts_20cm, Ts_40cm, Ts_60cm, Ts_100cm, Ts_160cm, Ts_200cm, Ts_240cm) (in:C), soil moisture (Ms_2cm, Ms_4cm, Ms_10cm, Ms_20cm, Ms_40cm, Ms_60cm, Ms_100cm, Ms_160cm, Ms_200cm, Ms_240cm) (unit: volumetric water content, percentage), upward and downward photosynthetically active radiation (PAR_up, PAR_down) (unit: micromole/sq.s). Processing and quality control of observed data :(1) ensure 144 pieces of data every day (every 10min), and mark by -6999 in case of data missing;Due to the sensor problem, the data of wind speed and infrared temperature between May 26 and July 9, 2017 were missing.(2) excluding the time with duplicate records;(3) data that obviously exceeds the physical significance or the range of the instrument is deleted;(4) the part marked with red letter in the data is the data in question;(5) date and time have the same format, and date and time are in the same column.For example, the time is: 2017-9-1010:30;(6) the naming rule is: AWS+ site name. For information of hydrometeorological network or station, please refer to Li et al. (2013), and for observation data processing, please refer to Liu et al. (2011).

0 2020-03-04

HiWATER: Dataset of hydrometeorological observation network (an automatic weather station of Sidaoqiao mixed forest station, 2016)

This data set contains meteorological element observation data from January 1, 2016 to December 31, 2016 at the downstream mixed forest station of heihe hydrometeorological observation network.The station is located at sidao bridge, dalaihubu town, ejin banner, Inner Mongolia.The longitude and latitude of the observation point are 101.1335e, 41.9903n and 874m above sea level.The air temperature and relative humidity sensors are located at 28m, facing due north.The barometer is installed in the anti-skid box on the ground;Tilting bucket rain gauge installed at 28m;The wind speed and direction sensor is located at 28m, facing due north.The four-component radiometer is installed at 24m, facing due south;Two infrared thermometers are installed at 24m, facing due south and the probe facing vertically downward.Two photosynthetically active radiators were installed at a position of 24m, facing due south, with one probe vertically upward and one probe vertically downward.The soil temperature probe is buried at 0cm of the surface and 2cm, 4cm, 10cm, 20cm, 40cm, 60cm and 100cm underground (observation at depths of 160cm,200cm and 240cm were increased on April 22), 2m to the south of the meteorological tower.The soil water probe was buried 2cm, 4cm, 10cm, 20cm, 40cm, 60cm and 100cm underground (observation at depths of 160cm,200cm and 240cm were increased on April 22), 2m to the south of the meteorological tower.The soil heat flow plates (3 pieces) are buried in the ground 6cm underground, 2m to the south of the meteorological tower. Observation items are: air temperature and humidity (Ta_28m, RH_28m) (unit: c, percentage), pressure (Press) (unit: hundred mpa), precipitation (Rain) (unit: mm), wind speed (WS_28m) (unit: m/s), wind (WD_28m) (unit: degrees), the radiation of four component (DR, UR, DLR_Cor, ULR_Cor, Rn) (unit: watts per square meter), the surface radiation temperature (IRT_1, IRT_2) (unit:C), soil heat flux (Gs_1, Gs_2, Gs_3) (in watts/m2), soil temperature (Ts_0cm, Ts_2cm, Ts_4cm, Ts_10cm, Ts_20cm, Ts_40cm, Ts_60cm, Ts_100cm, Ts_160cm, Ts_200cm, Ts_240cm) (in:C), soil moisture (Ms_2cm, Ms_4cm, Ms_10cm, Ms_20cm, Ms_40cm, Ms_60cm, Ms_100cm, Ms_160cm, Ms_200cm, Ms_240cm) (unit: volumetric water content, percentage), upward and downward photosynthetically active radiation (PAR_up, PAR_down) (unit: micromole/sq.s). Processing and quality control of observed data :(1) ensure 144 pieces of data every day (every 10min), and mark by -6999 in case of data missing;Due to the sensor problem, the wind direction was partly missing between April and April 21, 2016;The soil heat flux G1 is between 2.21-3.15, G2 is between 1.24-3.15, 4.4-4.22 and 12.1-12.21.(2) excluding the time with duplicate records;(3) data that obviously exceeds the physical significance or the range of the instrument is deleted;(4) the part marked with red letter in the data is the data in question;(5) date and time have the same format, and date and time are in the same column.For example, the time is: 2016-9-1010:30;(6) the naming rule is: AWS+ site name. For information of hydrometeorological network or station, please refer to Li et al. (2013), and for observation data processing, please refer to Liu et al. (2011).

0 2020-03-04