1: 1 million wetland data of Jiangsu Province

The data is clipped from "1: 1 million wetland data of China". "1: 1 million wetland data of China" mainly reflects the national marsh wetland information in the 2000s. It is expressed in geographic coordinates using the decimal degree. The main contents include: marsh wetland types, wetland water supply types, soil types, main vegetation types, geographical area, etc. Implemented the "Standard for Information Classification and Coding of Sustainable Development Information Sharing System of China". Data source of this database: 1:20 swamp map (internal version), Tibetan Plateau 1: 500,000 swamp map (internal version), swamp survey data 1: 1 million and national 1: 4 million swamp map; processing steps are: data source selection, preprocessing, digitization and encoding of marsh wetland elements, data editing processing, establishing topological relationships, edge processing, projection conversion, linking with attribute databases such as place names and obtaining attribute data.

0 2020-10-12

1:1 million wetland data of Zhejiang Province

The data is clipped from "1: 1 million wetland data of China". "1: 1 million wetland data of China" mainly reflects the national marsh wetland information in the 2000s. It is expressed in geographic coordinates using the decimal degree. The main contents include: marsh wetland types, wetland water supply types, soil types, main vegetation types, geographical area, etc. Implemented the "Standard for Information Classification and Coding of Sustainable Development Information Sharing System of China". Data source of this database: 1:20 swamp map (internal version), Tibetan Plateau 1: 500,000 swamp map (internal version), swamp survey data 1: 1 million and national 1: 4 million swamp map; processing steps are: data source selection, preprocessing, digitization and encoding of marsh wetland elements, data editing processing, establishing topological relationships, edge processing, projection conversion, linking with attribute databases such as place names and obtaining attribute data.

0 2020-10-12

Shanghai 1:1 million wetland data

The data is clipped from "1: 1 million wetland data of China". "1: 1 million wetland data of China" mainly reflects the national marsh wetland information in the 2000s. It is expressed in geographic coordinates using the decimal degree. The main contents include: marsh wetland types, wetland water supply types, soil types, main vegetation types, geographical area, etc. Implemented the "Standard for Information Classification and Coding of Sustainable Development Information Sharing System of China". Data source of this database: 1:20 swamp map (internal version), Tibetan Plateau 1: 500,000 swamp map (internal version), swamp survey data 1: 1 million and national 1: 4 million swamp map; processing steps are: data source selection, preprocessing, digitization and encoding of marsh wetland elements, data editing processing, establishing topological relationships, edge processing, projection conversion, linking with attribute databases such as place names and obtaining attribute data.

0 2020-10-12

Elevation dataset of ASTER_DEM in the Yellow river upstream (2009)

Ⅰ. Overview This dataset is derived from the global 30m-resolution digital elevation product dataset, which is processed using the data of the first version (v1) of ASTER GDEM. Its spatial resolution is 30m. Due to the influence of clouds, lines, pits, bulges, dams or other anomalies generated by the boundary stacking, there are local anomalies in the first version of the original data of ASTER GDEM, so the digital elevation processed by ASTER GDEM v1 Data products have data anomalies in individual areas, and users need to pay attention to them during use. In addition, this data set can complement the SRTM global 90m resolution elevation dataset. Ⅱ. Data processing description ASTER GDEM is a fully automated method to process and generate ASTER archived data of 1.5 million scenes, including 1,264,118 ASTER DEM data based on independent scenes generated through stereo correlation. After de-cloud processing, residual outliers are removed, and the average value is taken as the final pixel value of ASTER GDEM object area. After correcting the remaining abnormal data, the global ASTER GDEM data was generated by 1°× 1° sharding. Ⅲ. Data content description The dataset covers the entire upper reaches of the Yellow River, and each data file name is generated based on the latitude and longitude of the lower left (southwest) Angle of the fractal geometry center. For example, the lower-left coordinate of the ASTGTM_N40E116 file is 40 degrees north latitude and 116 degrees east longitude. ASTGTM_N40E116_dem and ASTGTM_N40E116_num correspond to digital elevation model (DEM) and quality control (QA) data, respectively. Ⅳ. Data usage description ASTER GDEM data can be calculated and visualized. It has a broad application prospect in various fields, especially in mapping, surface deformation and military fields.Specifically, it mainly includes the following aspects: In scientific research, ASTER GDEM data plays an important role in geology, geophysics, seismic research, horizontal modeling, volcano monitoring and remote sensing image registration.The three-dimensional model of the ground is built by using high-precision digital terrain elevation data, which can be embedded and superimposed with the image of the ground to observe subtle changes of the earth surface. In civil and industrial applications, ASTER GDEM data can be used for civil engineering calculation, dam site selection, land use planning, etc. In communications, digital topographic data can help businesses build better broadcast towers and determine the best location of mobile phone booths.In terms of aviation safety, ASTER GDEM digital elevation data can be used to establish the enhanced aircraft landing alarm system, which greatly improves the aircraft landing safety coefficient. In the military, ASTER GDEM data is the basic information platform of C4ISR (army automatic command system), which is indispensable in the study of battlefield regional structure, combat direction, battlefield preset, combat deployment, troop concentration in projection, protection conditions, logistics support and other aspects.

0 2020-10-10

Data set of glacier advance and retreat range in Karakoram area

The ages of glacial traces of the last glacial maximum, Holocene and little ice age in the Westerlies and monsoon areas were determined by Cosmogenic Nuclide (10Be and 26Al) exposure dating method to determine the absolute age sequence of glacial advance and retreat. The distribution of glacial remains is investigated in the field, the location of moraine ridge is determined, and the geomorphic characteristics of moraine ridge are measured. According to the geomorphic location and weathering degree of glacial remains, the relationship between the new and the old is determined, and the moraine ridge of the last glacial maximum is preliminarily determined. The exposed age samples of glacial boulders on each row of moraine ridges were collected from the ridge upstream. This data includes the range of glacier advance and retreat in Karakoram area during climate transition period based on 10Be exposure age method.

0 2020-09-16

1:100,000 data of distribution of desert for the Tarim River Basin (2000)

The data is the distribution map of 100,000 deserts in the Tarim River Basin. This data uses 2000 TM images as the data source to interpret, extract and revise, and uses remote sensing and geographic information system technology in combination with the mapping requirements of 1: 100,000 scale to carry out thematic mapping of deserts, sands and gravelly Gobi. Data attribute table: area (area), perimeter (perimeter), ashm_ (sequence code), class (desert code), ashm_id (desert code), of which desert code is as follows: flowing sand 2341010, semi-flowing sand 2341020, semi-fixed sand 2341030, Gobi desert 2342000, saline-alkali land 2343000

0 2020-09-16

Pan-TPE elevation data based on USGS 30 arc-second global elevation data

The data was obtained from the 30-second global elevation dataset developed by the US Geological Survey (USGS) and completed in 1996. Downloaded the data from the NCAR and UCAR Joint Data Download Center (https://rda.ucar.edu/datasets/ds758.0/) and redistributed it through this data center. GTOPO30 divides the world into 33 blocks. The sampling interval is 30 arc seconds, which is 0.00833333333333333 degrees. The coordinate reference is WGS84. The DEM is the distance from the sea level in the vertical direction, ie the altitude, in m, the altitude range from -407 to 8752, the ocean depth information is not included here, the negative value is the altitude of the continental shelf; the ocean is marked as -9999, the elevation above the coastline is at least 1; the island less than 1 square kilometer is not considered. In order to facilitate the user's convenience, on the basis of the block data, splice 10 blocks in -10S-90N and 20W-180E without any resampling processing. This data file is DEM_ptpe_Gtopo30.nc

0 2020-08-24

Antarctic ice sheet surface elevation data (2003-2009)

The Antarctic ice sheet elevation data were generated from radar altimeter data (Envisat RA-2) and lidar data (ICESat/GLAS). To improve the accuracy of the ICESat/GLAS data, five different quality control indicators were used to process the GLAS data, filtering out 8.36% unqualified data. These five quality control indicators were used to eliminate satellite location error, atmospheric forward scattering, saturation and cloud effects. At the same time, dry and wet tropospheric, correction, solid tide and extreme tide corrections were performed on the Envisat RA-2 data. For the two different elevation data, an elevation relative correction method based on the geometric intersection of Envisat RA-2 and GLAS data spot footprints was proposed, which was used to analyze the point pairs of GLAS footprints and Envisat RA-2 data center points, establish the correlation between the height difference of these intersection points (GLAS-RA-2) and the roughness of the terrain relief, and perform the relative correction of the Envisat RA-2 data to the point pairs with stable correlation. By analyzing the altimetry density in different areas of the Antarctic ice sheet, the final DEM resolution was determined to be 1000 meters. Considering the differences between the Prydz Bay and the inland regions of the Antarctic, the Antarctic ice sheet was divided into 16 sections. The best interpolation model and parameters were determined by semivariogram analysis, and the Antarctic ice sheet elevation data with a resolution of 1000 meters were generated by the Kriging interpolation method. The new Antarctic DEM was verified by two kinds of airborne lidar data and GPS data measured by multiple Antarctic expeditions of China. The results showed that the differences between the new DEM and the measured data ranged from 3.21 to 27.84 meters, and the error distribution was closely related to the slope.

0 2020-08-13

Distribution data of geomorphic surface near Zhengyi gorge in the middle reaches of Heihe River (2012-2013)

From 2012 to 2013, the geomorphic surface near the Zhengyi gorge in the middle reaches of the Heihe River was investigated, mainly including the 4-level river terrace. The data are mainly obtained through field investigation, and analyzed and mapped indoors to obtain the distribution map of geomorphic surface at all levels near the middle reaches of Zhengyi gorge.

0 2020-07-31

Geomorphic surfaces deforming along the Heihe River Basin (2012-2013)

The Trimble 5800 GPS was used to measure the carrier phase of the terrace surface in real time, and the elevation data of the terrace surface was obtained.The deformation characteristics and amplitude of the terrace are analyzed.The data include the deformation of landform near zhengyi gorge in the middle reaches of heihe river and the deformation of landform near yingluo gorge in the upper reaches of heihe river.

0 2020-07-31