Scientific research on the construction of Gannan West Sichuan line as a world tourism destination on the Qinghai Tibet Plateau (2021)

Through the investigation of tourist spots, tourist routes and tourist areas at different levels, form photos and video data of tourism resources, tourism services and tourism facilities of scenic spots, scenic spots, corridors and important tourism transportation nodes, tourism villages and tourism towns, record the tourism development status, find problems in tourism development, and form corresponding ideas for the construction of world tourism destinations; The data sources are UAV, tachograph and camera, mobile phone and GPS, and are divided into different folders according to scenic spots and data categories; The data has been checked for many times to ensure its authenticity; This data can provide a traceable basis for the construction of world tourism destinations on the Qinghai Tibet Plateau.

0 2022-03-18

UAV remote sensing image and model product data set in demonstration area (2019-2021)

On October 24, 2019 and June 9, 2021, the special group conducted UAV flight operations in the debris flow gullies of Jilong gully, Tianmo gully and Guxiang gully in Bomi County, Nyingchi City, Tibet Autonomous Region, and generated the real three-dimensional model and digital surface model (DSM) of the debris flow gully in the demonstration area; In 2020, he worked in Kada village, Bomi county and generated real 3D model, digital surface model, digital orthophoto (DOM) and digital elevation model (DEM); On June 9, 2021, it was operated again in guxianggou to obtain the real 3D model and digital surface model. The spatial resolution of the above products is about 0.1M, and the main processing methods are as follows: (1) The real scene 3D modeling method based on UAV remote sensing can obtain rich texture information and generate dense 3D point clouds by using UAV photogrammetry technology. Combined with automatic real scene 3D modeling technology, the real 3D scene can be obtained. (2) The obtained three-dimensional model is optimized by cavity repair and filtering, which effectively fills the water cavity in the three-dimensional model. (3) Based on 3D modeling, DSM data of the demonstration area can be directly generated in CC. (4) Use mapmatrix to interpolate the polygon of DSM, erase the height of vegetation and other ground objects, and get DEM data. (5) The accuracy of 3D modeling is optimized by pricking operation.

0 2022-03-08

Aster GDEM data Pan-TPE (2002)

The ages of glacial traces of the last glacial maximum, Holocene and little ice age in the Westerlies and monsoon areas were determined by Cosmogenic Nuclide (10Be and 26Al) exposure dating method to determine the absolute age sequence of glacial advance and retreat. The distribution of glacial remains is investigated in the field, the location of moraine ridge is determined, and the geomorphic characteristics of moraine ridge are measured. According to the geomorphic location and weathering degree of glacial remains, the relationship between the new and the old is determined, and the moraine ridge of the last glacial maximum is preliminarily determined. The exposed age samples of glacial boulders on each row of moraine ridges were collected from the ridge upstream. This data includes the range of glacier advance and retreat in Karakoram area during climate transition period based on 10Be exposure age method.

0 2022-03-02

Modeling the influence of climate change on the distribution and activities of the Qinghai toad-headed lizard (1960-2080)

Based on the distribution locations of the Qinghai toad-headed lizard (Phrynocephalus vlangalii) collected by field investigation and literature investigation, combined with five climate factors from WorldClim database, the current (1960-1990) and future (2061-2080) climate data were input into the trained species distribution model to predict the current and future suitable habitats. The prediction results shows that the lizard will lose a lot of original habitats under the climate change, and the protection measures for the lizard species should focus on the eastern margin of Qinghai-Tibet Plateau, the northern and eastern parts of Qaidam Basin. The model also predicts that after the climate change, new suitable habitats will appear in areas that were not suitable for the Qinghai toad-headed lizard. However, due to the very limited diffusion ability of reptiles (the maximum annual diffusion distance recorded in the literature is less than 500m), the newly emerging suitable habitats may not be used by the Qinghai toad-headed lizard. Meanwhile, based on the physiological, life history, behavior and morphological data of three altitudinal populations of the Qinghai toad-headed lizard collected by field work, and combined with microclimate data, the physiological consequences of climate change on the Qinghai toad-headed lizard in the current suitable distribution area were predicted by using the mechanism niche model. The prediction results of the model show that, whether in the SSP245 or SSP585 climate change scenarios, the activity time of the lizard will increase in most areas (> 93%) of the current suitable distribution area, and the thermal safety threshold will decrease in all places of the current suitable distribution area. The increase of activity time of high-altitude populations is less than that of low-altitude populations, but the decrease of thermal safety threshold is greater than that of low-altitude populations. The results reveal that climate change may have a greater impact on lizard populations in high altitude areas.

0 2022-01-18

The SRTM digital elevation model of the Tibetan Plateau (2000)

This data set is a digital elevation model of the Tibetan Plateau and can be used to assist in analysis and research of basic geographic information for the Tibetan Plateau. The raw data were the Shuttle Radar Topography Mission (SRTM) data, which were provided by Global Land Cover Network (GLCN), and the raw data were framing data , using the WGS84 coordinate system, including latitude and longitude, with a spatial resolution of 3″. After the mosaic processing, the Nodata (null data) generated in the mosaic process were interpolated and filled. After filling, the projection conversion process was performed to generate data as Albers equal area conical projection. After the conversion projection, the spatial resolution of the data was 90 m. Finally, the boundary of the Tibetan Plateau was used for cutting to obtain DEM data. This data table has two fields. Field 1: value Data type: long integer Interpretation: altitude elevation Unit: m Field 2: count Data type: long integer Interpretation: The number of map spots corresponding to the altitude elevation Data accuracy: spatial resolution: 90 m

0 2022-01-11

ALOS World 3D- 30m of Sichuan Tibet traffic corridor (2006)

The data is from JAXA earth observation research center( http://www.eorc.jaxa.jp/ALOS/en/aw3d30/ )The product is alos World 3D - 30m (aw3d30). Select and download the map by importing the SHP boundary of Sichuan Tibet traffic corridor, and merge it into one by using relevant software. The format is raster data, the spatial resolution is 30m, and the data size is 1.3GB. The DEM data can generate topographic factor data such as slope, aspect and river network by using relevant software. They are the basic data for topographic analysis of Sichuan Tibet traffic corridor, help to understand the geomorphic form of the basin, and are also the key factors for disaster zoning research and risk assessment. The acquisition of high-precision DEM is of great significance for disaster risk management and decision-making level and reducing the loss of major geological disasters.

0 2022-01-10

Antarctic ice sheet surface elevation data (2003-2009)

The Antarctic ice sheet elevation data were generated from radar altimeter data (Envisat RA-2) and lidar data (ICESat/GLAS). To improve the accuracy of the ICESat/GLAS data, five different quality control indicators were used to process the GLAS data, filtering out 8.36% unqualified data. These five quality control indicators were used to eliminate satellite location error, atmospheric forward scattering, saturation and cloud effects. At the same time, dry and wet tropospheric, correction, solid tide and extreme tide corrections were performed on the Envisat RA-2 data. For the two different elevation data, an elevation relative correction method based on the geometric intersection of Envisat RA-2 and GLAS data spot footprints was proposed, which was used to analyze the point pairs of GLAS footprints and Envisat RA-2 data center points, establish the correlation between the height difference of these intersection points (GLAS-RA-2) and the roughness of the terrain relief, and perform the relative correction of the Envisat RA-2 data to the point pairs with stable correlation. By analyzing the altimetry density in different areas of the Antarctic ice sheet, the final DEM resolution was determined to be 1000 meters. Considering the differences between the Prydz Bay and the inland regions of the Antarctic, the Antarctic ice sheet was divided into 16 sections. The best interpolation model and parameters were determined by semivariogram analysis, and the Antarctic ice sheet elevation data with a resolution of 1000 meters were generated by the Kriging interpolation method. The new Antarctic DEM was verified by two kinds of airborne lidar data and GPS data measured by multiple Antarctic expeditions of China. The results showed that the differences between the new DEM and the measured data ranged from 3.21 to 27.84 meters, and the error distribution was closely related to the slope.

0 2021-11-02

Surface DEM for typical glaciers on the Tibetan Plateau (Version 1.0) (2003)

The DEMs of the typical glaciers on the Tibetan Plateau were provided by the bistatic InSAR method. The data were collected on November 21, 2013. It covered Puruogangri and west Qilian Mountains with a spatial resolution of 10 meters, and an elevation accuracy of 0.8 m which met the requirements of national 1:10 000 topographic mapping. Considering the characteristics of the bistatic InSAR in terms of imaging geometry and phase unwrapping, based on the TanDEM-X bistatic InSAR data, and adopting the improved SAR interference processing method, the surface DEMs of the two typical glaciers above were generated with high resolution and precision. The data set was in GeoTIFF format, and each typical glacial DEM was stored in a folder. For details of the data, please refer to the Surface DEMs for typical glaciers on the Tibetan Plateau - Data Description.

0 2021-10-26

SRTM DEM data on the Tibetan Plateau (2012)

This data set is mainly the SRTM terrain data obtained by International Center for Tropical Agriculture (CIAT)with the new interpolation algorithm, which better fills the data void of SRTM 90. The interpolation algorithm was adpoted from Reuter et al. (2007). SRTM's data organization method is as follows: divide a file into 24 rows (-60 to 60 degrees) and 72 columns (-180 to 180 degrees) in every 5 degrees of latitude and longitude grid, and the data resolution is 90 meters. Data usage: SRTM data are expressed as elevation values with 16-bit values (-/+/32767 m), maximum positive elevation of 9000m, and negative elevation (12000m below sea level). For null data use the -32767 standard.

0 2021-08-02

Drainage networks of Lancang-Mekong river basin (flow direction, flow accumulation, river networks)

1) Data content (including elements and significance) This data set contains information of flow direction, accumulation of vector river network of Lancang Mekong River Basin. <br><br> 2) Data sources and processing methods In this data set, the remote sensing stream buring (RSSB) method (Wang et al., 2021) is adopted, and the high-precision elevation model MERIT-DEM and Sentinel-2 optical imagery are fused. <br><br> 3) Data quality description Validations show that this data set has high spatial accuracy (Wang et al, 2021). <br><br> 4) Data application achievements and Prospects This data set provides basic information of river networks, which can be used for hydrological model, land surface model, earth system model, as well as for mapping and spatial statistical analysis.

0 2021-05-06