Basic geographic data of Qinghai Tibet Plateau (2015)

The data set is the basic data of the Qinghai Tibet Plateau in 2015. The original data comes from the National Basic Geographic Information Center, and the data of the Qinghai Tibet plateau region is formed by splicing and clipping the segmented data. The data content includes 1:1 million provincial administrative divisions, 1:1 million roads and 1:250000 water system. The data attributes of administrative divisions include name, code and Pinyin; Road data attributes include: GB, RN, name, rteg and type (basic geographic information classification code, road code, road name, road grade and road type); Water system data attributes include: GB, hydc, name, period (basic geographic information classification code, water system name code, name, season).

0 2022-04-18

Automatic division system source code of slope unit based on confluence analysis and slope direction Division

1) The work of automatically dividing a wide and complex geospatial area or even a complete watershed into repeatable and geomorphically consistent topographic units is still in the stage of theoretical concept, and there are great challenges in practical operation. Terrain unit is a further subdivision of topography and geomorphology, which can ensure the maximum uniformity of geomorphic features in slope unit and the maximum heterogeneity between different units. It is suitable for geomorphic or hydrological modeling, landslide detection in remote sensing images, landslide sensitivity analysis and geological disaster risk assessment. 2) Slope unit is an important type of topographic unit. Slope unit is defined as the area surrounded by watershed and catchment line. In fact, the area surrounded by watershed and catchment line is often multiple slopes or even a small watershed. Theoretically, each slope unit needs to ensure the maximum internal homogeneity and the maximum heterogeneity between different units. The slope unit is an area with obviously different topographic characteristics from the adjacent area. These topographic characteristics can be based on the characteristics of catchment or drainage boundary, slope and slope direction, such as ridge line, valley line, platform boundary, valley bottom boundary and other geomorphic boundaries. According to the high-precision digital elevation model, the slope unit with appropriate scale and quality can be drawn manually, but the manual drawing method is time-consuming and error prone. The quality of the divided slope unit depends on the subjective experience of experts, which is suitable for small-scale areas and has no wide and universal application value. Aiming at the gap in practical operation in this field, we propose an innovative modeling software system to realize the optimal division of slope units. Automatic division system of slope unit based on confluence analysis and slope direction division v1 0, written in Python programming language, runs and calculates as the grass GIS interpolation module, and realizes the automatic division of slope units in a given digital elevation data and a set of predefined parameters. 4) Based on python programming language, the code is flexible and changeable, which is suitable for scientific personnel with different professional knowledge to make a wide range of customization and personalized customization. In addition, the software can provide high-quality slope unit division results, reflect the main geomorphic characteristics of the region, and provide a based evaluation unit for fine landslide disaster evaluation and prediction. It can serve regional land use planning, disaster risk assessment and management, disaster emergency response under extreme induced events (earthquake or rainfall, etc.), and has great practical guiding significance for the selection of landslide monitoring equipment and the reasonable and effective layout and operation of early warning network. It can be popularized and applied in areas with serious landslide development.

0 2022-03-23

Regional landslide sensitivity analysis system source code based on optimal combination strategy

1) In mountainous areas, due to the complex topographic and geological background conditions, landslides are very easy to occur triggered by external factors such as rainfall, snow melting, earthquake and human engineering activities, resulting in the loss of life and property and the destruction of the natural environment. In order to meet the safety of project site construction, the rationality of land use planning and the urgent needs of disaster mitigation, it is necessary to carry out regional landslide sensitivity evaluation. When many different evaluation results are obtained by using a variety of different methods, how to effectively combine these results to obtain the optimal prediction is a technical problem that is still not difficult to solve at present. It is still very lack in determining the optimal strategy and operation execution of the optimal method for landslide sensitivity evaluation in a certain area. 2) Using the traditional classical multivariate classification technology, through the evaluation of model results and error quantification, the optimal evaluation model is combined to quickly realize the high-quality evaluation of regional landslide sensitivity. The source code is written based on the R language software platform. The user needs to prepare a local folder separately to read and store the software operation results. The user needs to remember the folder storage path and make corresponding settings in the software source code. 3) The source code designs two different modes to display the operation results of the model. The analysis results are output in the standard format of text and graphic format and the geospatial mode that needs spatial data and is displayed in the standard geographic format. 4) it is suitable for all people interested in landslide risk assessment. The software can be used efficiently by experienced researchers in Colleges and universities, and can also be used by government personnel and public welfare organizations in the field of land and environmental planning and management to obtain landslide sensitivity classification results conveniently, quickly, correctly and reliably. It can serve regional land use planning, disaster risk assessment and management, disaster emergency response under extreme induced events (earthquake or rainfall, etc.), and has great practical guiding significance for the selection of landslide monitoring equipment and the reasonable and effective layout and operation of early warning network. It can be popularized and applied in areas with serious landslide development

0 2022-03-23

County socio-economic statistics of Qinghai Tibet Plateau (2000-2015)

This data set includes the social, economic, resource and other relevant index data of Gansu, Qinghai, Sichuan, Tibet, Xinjiang and Yunnan in the Qinghai Tibet Plateau from 2000 to 2015. The data are derived from Gansu statistical yearbook, Qinghai statistical yearbook, Sichuan statistical yearbook, Xizang statistical yearbook, Xinjiang statistical yearbook, Yunnan statistical Yearbook China county (city) socio economic statistical yearbook And China economic network, guotai'an, etc. The statistical scale is county-level unit scale, including 26 county-level units such as Yumen City, Aksai Kazak Autonomous Region and Subei Mongolian Autonomous County in Gansu Province, 41 county-level units such as Delingha City, Ulan county and Tianjun County in Qinghai Province, 46 counties such as Shiqu County, Ruoergai County and ABA County in Sichuan Province, and 78 counties such as Ritu County, Gaize county and bango County in Tibet, 14 counties including Wuqia County, aktao county and Shache County in Xinjiang Province, and 9 counties including Deqin County, Zhongdian county and Fugong County in Yunnan Province; Variables include County GDP, added value of primary industry, added value of secondary industry, added value of tertiary industry, total industrial output value of Industrial Enterprises above Designated Size, total retail sales of social consumer goods, balance of residents' savings deposits, grain output, total sown area of crops, number of students in ordinary middle schools and land area. The data set can be used to evaluate the social, economic and resource status of the Qinghai Tibet Plateau.

0 2021-12-28

Dataset of town boundary in Sanjiangyuan region National Park (2015)

This dataset is the spatial distribution map of the marshes in the source area of the Yellow River near the Zaling Lake-Eling Lake, covering an area of about 21,000 square kilometers. The data set is classified by the Landsat 8 image through an expert decision tree and corrected by manual visual interpretation. The spatial resolution of the image is 30m, using the WGS 1984 UTM projected coordinate system, and the data format is grid format. The image is divided into five types of land, the land type 1 is “water body”, the land type 2 is “high-cover vegetation”, the land type 3 is “naked land”, and the land type 4 is “low-cover vegetation”, and the land type 5 is For "marsh", low-coverage vegetation and high-coverage vegetation are distinguished by vegetation coverage. The threshold is 0.1 to 0.4 for low-cover vegetation and 0.4 to 1 for high-cover vegetation.

0 2021-11-02

1 km grid datasets of habitat quality in agricultural and pastoral areas of the Qinghai-Tibet Plateau (1990-2015)

As the roof of the world, the water tower of Asia and the third pole of the world, the Qinghai Tibet Plateau is an important ecological security barrier for China and even Asia. With the rapid development of social economy, human activities have increased significantly, and the impact on the ecological environment is growing. In this paper, eight factors including cultivated land, construction land, National Road, provincial road, railway, expressway, GDP and population density were selected as the threat factors, and the attributes of the threat factors were determined based on the expert scoring method to evaluate the habitat quality of the Qinghai Tibet Plateau, so as to obtain six data sets of the habitat quality of the agricultural and pastoral areas of the Qinghai Tibet Plateau in 1990, 1995, 2000, 2005, 2010 and 2015. The production of habitat quality data sets will help to explore the habitat quality of the Qinghai Tibet Plateau and provide effective support for the government to formulate sustainable development policies of the Qinghai Tibet Plateau.

0 2021-06-08

Basic geographic dataset of the Qinghai-Tibetan Plateau (2000-2015)

The natural resources dataset of the Qinghai-Tibetan Plateau covers 215 counties in this area. The observation intervals are 5 years from 2000-2015. The indicators are rainfall, temperature, humidity, population, and land area. The data sources are meteorological station data, regional statistical yearbook, etc., which are expressed by Excel. This data provides a reference for understanding the natural background conditions on the county scale in the Qinghai Tibet Plateau.

0 2021-05-18

Dataset of natural resources on the Qinghai-Tibetan Plateau

The natural resources dataset of the Qinghai-Tibetan Plateau covers 215 counties in this area. The observation intervals are 5 years from 2000-2015. The indicators are rainfall, temperature, humidity, population, and land area. The data sources are meteorological station data, regional statistical yearbook, etc., which are expressed by Excel. This data provides a reference for understanding the natural background conditions on the county scale in the Qinghai Tibet Plateau.

0 2021-01-10

Spatial pattern data of five major cities in central Asia - Dushanbe (1990、2018)

Land use data of Dushanbe, with a resolution of 30 meters, was in the form of TIF and the time was 1990.03.03 and 2018.03.16, respectively.Data source GLC, the raw data of its global land cover data comes from Envisat satellite and is captured by MERIS (Medium Resolution Imaging Spectrometer) sensor.There are currently two issues, GlobCover (Global Land Cover Map) and GlobCover (Global Land Cover Product).

0 2019-09-15

Spatial pattern data of five major cities in central Asia - Bishkek (1990, 2018)

Land use data of Bishkek, with a resolution of 30 meters, was in the form of TIF and the time was 1990.03.30 and 2018.04.12, respectively.Data source GLC, the raw data of its global land cover data comes from Envisat satellite and is captured by MERIS (Medium Resolution Imaging Spectrometer) sensor.There are currently two issues, GlobCover (Global Land Cover Map) and GlobCover (Global Land Cover Product).

0 2019-09-12