Pan-third-polar environmental change and green silk road construction

Brief Introduction: Pan-third-polar environmental change and green silk road construction

Number of Datasets: 1212

  • Meteorological data of surface environment and observation network in China's cold region (2018)

    Meteorological data of surface environment and observation network in China's cold region (2018)

    1) Data content (including elements and significance): 21 stations (Southeast Tibet station, Namucuo station, Zhufeng station, mustag station, Ali station, Naqu station, Shuanghu station, Geermu station, Tianshan station, Qilianshan station, Ruoergai station (northwest courtyard), Yulong Xueshan station, Naqu station (hanhansuo), Haibei Station, Sanjiangyuan station, Shenzha station, gonggashan station, Ruoergai station( Chengdu Institute of biology, Naqu station (Institute of Geography), Lhasa station, Qinghai Lake Station) 2018 Qinghai Tibet Plateau meteorological observation data set (temperature, precipitation, wind direction and speed, relative humidity, air pressure, radiation and evaporation) 2) Data source and processing method: field observation at Excel stations in 21 formats 3) Data quality description: daily resolution of the site 4) Data application results and prospects: Based on long-term observation data of various cold stations in the Alpine Network and overseas stations in the pan-third pole region, a series of datasets of meteorological, hydrological and ecological elements in the pan-third pole region were established; Strengthen observation and sample site and sample point verification, complete the inversion of meteorological elements, lake water quantity and quality, above-ground vegetation biomass, glacial frozen soil change and other data products; based on the Internet of Things technology, develop and establish multi-station networked meteorological, hydrological, Ecological data management platform, real-time acquisition and remote control and sharing of networked data.

    2021-10-15 4819 7

  • Integration dataset of Tibet Plateau boundary

    Integration dataset of Tibet Plateau boundary

    This dataset contains five types of boundaries. 1. TPBoundary_ 2500m: Based on ETOPO5 Global Surface Relief, ENVI+IDL was used to extract data at an elevation of 2500m within the longitude (65~105E) and latitude (20~45N) range in the Tibetan Plateau. 2. TPBoundary_ 3000m: Based on ETOPO5 Global Surface Relief, ENVI+IDL was used to extract data at an elevation of 3000m within the longitude (65~105E) and latitude (20~45N) range in the Tibetan Plateau. 3. TPBoundary_ HF (high_frequency): This boundary is defined according to 2 previous studies. Bingyuan Li (1987) had a systematic discussion on the principles for determining the extent of the Tibetan Plateau and the specific boundaries. From the perspective of the formation and basic characteristics of the Tibetan Plateau, he proposed the basic principles for determining the extent of the Tibetan Plateau based on the geomorphological features, the plateau surface and its altitude, while considering the integrity of the mountain. Yili Zhang (2002) determined the extent and boundaries of the Tibetan Plateau based on the new results of research in related fields and years of field practice. He combined information technology methods to precisely locate and quantitatively analyze the extent and boundary location of the Tibetan Plateau, and concluded that the Tibetan Plateau in China extends from the Pamir Plateau in the west to the Hengduan Mountains in the east, from the southern edge of the Himalayas in the south to the northern side of the Kunlun-Qilian Mountains in the north. On April 14, 2017, the Ministry of Civil Affairs of the People's Republic of China issued the Announcement on Adding Geographical Names for Public Use in the Southern Tibetan Region (First Batch), adding six geographical names in the southern Tibetan region, including Wo’gyainling, Mila Ri, Qoidêngarbo Ri, Mainquka, Bümo La, and Namkapub Ri. 4. TPBoundary_ New (2021): Along with the in-depth research on the Tibetan Plateau, the improvement of multidisciplinary research and understanding inside and outside the plateau, and the progress of geographic big data and Earth observation science and technology, the development of the 2021 version of the Tibetan Plateau boundary data by Yili Zhang and et al. was completed based on the comprehensive analysis of ASTER GDEM and Google Earth remote sensing images. The range boundary starts from the northern foot of the West Kunlun Mountain-Qilian Mountain Range in the north and reaches the southern foot of the Himalayas and other mountain ranges in the south, with a maximum width of 1,560 km from north to south; from the western edge of the Hindu Kush Mountains and the Pamir Plateau in the west to the eastern edge of the Hengduan Mountains and other mountain ranges in the east, with a maximum length of about 3,360 km from east to west; the latitude and longitude range is 25°59′30″N~40°1′0″N, 67°40′37″E~104°40′57″E, with a total area of 3,083,400km2 and an average altitude of about 4,320m. Administratively, the Tibetan Plateau is distributed in nine countries, including China, India, Pakistan, Tajikistan, Afghanistan, Nepal, Bhutan, Myanmar, and Kyrgyzstan. 5. TPBoundary_ Rectangle: The rectangle was drawn according to the range of Lon (63~105E) and Lat (20~45N). The data are in latitude and longitude projection WGS84. As the basic data, the boundary of the Tibetan Plateau can be used as a reference basis for various geological data and scientific research on the Tibetan Plateau.

    2021-10-14 11208 916

  • Dataset of plant distribution investigation in Three-River-Source National Park (2008-2017)

    Dataset of plant distribution investigation in Three-River-Source National Park (2008-2017)

    This data set is the plant collection and distribution site information of Three-River-Source National Park investigated by Northwest Plateau Biology Institute of Chinese Academy of Sciences. The data set covers the period from 2008 to 2017, and the survey covers theThree-River-Source National Park. The survey contents include information such as collection date, number, family, genus, species, survey date, collection place, collector, longitude, latitude, altitude, habitat, appraiser, etc. Three parks of the national park were investigated respectively. 88 species of vegetation belonging to 56 genera and 24 families were investigated in the Yangtze River Source Park, with 116 records in total. Vegetation of 110 species in 64 genera and 26 families was investigated in the Yellow River Source Park, with 159 records in total. The vegetation of 30 species in 22 genera and 12 families was investigated in Lancang River Source Park, with a total of 33 records.

    2021-10-13 4742 77

  • The ASTER_GDEM dataset of the Tibetan Plateau (2011)

    The ASTER_GDEM dataset of the Tibetan Plateau (2011)

    The ASTER Global Digital Elevation Model (ASTER GDEM) is a global digital elevation data product jointly released by the National Aeronautics and Space Administration of America (NASA) and the Ministry of Economy, Trade and Industry of Japan (METI). The DEM data were based on the observation results of NASA’s new generation of Earth observation satellite, TERRA, and generated from 1.3 million stereo image pairs collected by ASTER (Advanced Space borne Thermal Emission and Reflection Radio meter) sensors, covering more than 99% of the land surface of the Earth. These data were downloaded from the ASTER GDEM data distribution website. For the convenience of using the data, based on framing the ASTER GDEM data, we used Erdas software to splice and prepare the ASTER GDEM mosaic of the Tibetan Plateau. This data set contains three data files: ASTER_GDEM_TILES ASTERGDEM_MOSAIC_DEM ASTERGDEM_MOSAIC_NUM The ASTER GDEM data of the Tibetan Plateau have an accuracy of 30 meters, the raw data are in tif format, and the mosaic data are stored in the img format. The raw data of this data set were downloaded from the ASTERGDEM website and completely retained the original appearance of the data. ASTER GDEM was divided into several 1×1 degree data blocks during distribution. The distribution format was the zip compression format, and each compressed package included two files. The file naming format is as follows: ASTGTM_NxxEyyy_dem.tif ASTGTM_NxxEyyy_num.tif xx is the starting latitude, and yyy is the starting longitude. _dem.tif is the dem data file, and _num.tif is the data quality file. ASTER GDEM TILES: The original, unprocessed raw data are retained. ASTERGDEM_MOSAIC_DEM: Inlay the dem.tif data using Erdas software, and parameter settings use default values. ASRERGDEM_MOSAIC_NUM: Inlay the num.tif data using Erdas software, and parameter settings use default values. The original raw data are retained, and the accuracy is consistent with that of the ASTERGDEM data distribution website. The horizontal accuracy of the data is 30 meters, and the elevation accuracy is 20 meters. The mosaic data are made by Erdas, and the parameter settings use the default values.

    2021-10-13 4018 174

  • Cold and Arid Research Network of Lanzhou university (eddy covariance system of Guazhou station, 2020)

    Cold and Arid Research Network of Lanzhou university (eddy covariance system of Guazhou station, 2020)

    The data set contains the eddy correlator observation data of Guazhou station of Lanzhou University cold and arid area scientific observation network of Lanzhou University from January 1, 2020 to December 31, 2020. The station is located in Liuyuan Town, Guazhou County, Jiuquan, Gansu Province, with desert on the underlying surface. The longitude and latitude of the observation point are 95.673e, 41.405n, and the altitude is 2014m. The frame height of eddy correlator is 4m, the sampling frequency is 10Hz, the ultrasonic direction is due north, and the distance between ultrasonic anemometer (csat3) and CO2 / H2O analyzer (li7500a) is 17cm. The original observation data of eddy correlator is 10Hz, and the released data is the 30 minute data processed by eddypro software. The main processing steps include: field value elimination, delay time correction, coordinate rotation (quadratic coordinate rotation), frequency response correction, ultrasonic virtual temperature correction and density (WPL) correction. At the same time, the quality of each flux value is evaluated, mainly the atmospheric stability( Δ St) and turbulence similarity characteristics (ITC). The 30min flux value output by eddypro software is also screened: (1) eliminate the data when the instrument is wrong; (2) Eliminate the data 1H before and after precipitation; (3) Eliminate the data with a loss rate of more than 10% every 30min in the 10Hz original data. The average period of observation data is 30 minutes, 48 data a day, and the missing data is marked as - 6999. The published observation data include: date / time, wind direction WDIR (°), horizontal wind speed wnd (M / s), standard deviation of lateral wind speed STD_ Uy (M / s), ultrasonic virtual temperature TV (℃), water vapor density H2O (g / m3), carbon dioxide concentration CO2 (mg / m3), friction velocity ustar (M / s), Obukhov length L (m), sensible heat flux HS (w / m2), latent heat flux Le (w / m2), carbon dioxide flux FC (mg / (M2S)), quality identification QA of sensible heat flux_ HS, quality identification of latent heat flux QA_ Le, quality identification QA of carbon dioxide flux_ Fc。 The quality identification of sensible heat, latent heat and carbon dioxide flux is divided into nine levels (quality identification 1-3 has good data quality, 4-6 has good data quality, 7-8 has poor data quality (better than interpolated data), and 9 has poor data quality). The meaning of data time, for example, 0:30 represents the average of 0:00-0:30; The data is stored in *. XLS format. For observation data processing, please refer to Liu et al. (2011).

    2021-10-12 216 16

  • Cold and Arid Research Network of Lanzhou university (eddy covariance system of Liancheng station, 2020)

    Cold and Arid Research Network of Lanzhou university (eddy covariance system of Liancheng station, 2020)

    This dataset contains the flux measurements from the Liancheng Station eddy covariance system (EC) in the middle reaches of the Heihe integrated observatory network from September 14 to December 31 in 2020. The site (102.737E, 36.692N) was located on a forest in the Tulugou national forest park, which is near Liancheng city, Gansu Province. The elevation is 2903 m. The EC was installed at a height of 4.0 m, and the sampling rate was 10 Hz. The sonic anemometer faced north, and the separation distance between the sonic anemometer and the CO2/H2O gas analyzer (CSAT3&Li7500A) was 0.17 m. The raw data acquired at 10 Hz were processed using the Eddypro post-processing software, including the spike detection, lag correction of H2O/CO2 relative to the vertical wind component, sonic virtual temperature correction, coordinate rotation (2-D rotation), corrections for density fluctuation (Webb-Pearman-Leuning correction), and frequency response correction. The EC data were subsequently averaged over 30 min periods. The observation data quality was divided into three classes according to the quality assessment method of stationarity (Δst) and the integral turbulent characteristics test (ITC): class 1-3 (high quality), class 4-6 (good), class 7-8 (poor, better than gap filling data), class9 (rejected). In addition to the above processing steps, the half-hourly flux data were screened in a four-step procedure: (1) data from periods of sensor malfunction were rejected; (2) data collected before or after 1 h of precipitation were rejected; (3) incomplete 30 min data were rejected when the missing data constituted more than 3% of the 30 min raw record; and (4) data were rejected at night when the friction velocity (u*) was less than 0.1 m/s. There were 48 records per day, and the missing data were replaced with -6999. The released data contained the following variables: data/time, wind direction (Wdir, °), wind speed (Wnd, m/s), the standard deviation of the lateral wind (Std_Uy, m/s), virtual temperature (Tv, ℃), H2O mass density (H2O, g/m3), CO2 mass density (CO2, mg/m3), friction velocity (ustar, m/s), stability (z/L), sensible heat flux (Hs, W/m2), latent heat flux (LE, W/m2), carbon dioxide flux (Fc, mg/ (m2s)), quality assessment of the sensible heat flux (QA_Hs), quality assessment of the latent heat flux (QA_LE), and quality assessment of the carbon flux (QA_Fc). In this dataset, the time of 0:30 corresponds to the average data for the period between 0:00 and 0:30; the data were stored in *.xls format. Detailed information can be found in the suggested references.

    2021-10-12 287 23

  • Cold and Arid Research Network of Lanzhou university (eddy covariance system of Xiyinghe station, 2020)

    Cold and Arid Research Network of Lanzhou university (eddy covariance system of Xiyinghe station, 2020)

    The data set contains the eddy correlator observation data of xiyinghe station of Lanzhou University cold and arid area scientific observation network of Lanzhou University from January 1, 2020 to December 31, 2020. The station is located in taola village, Xianmi Township, Menyuan County, Haibei, Qinghai, with alpine meadow on the underlying surface. The longitude and latitude of the observation point are 101.855e, 37.561n and the altitude is 3616m. The frame height of eddy correlator is 4m, the sampling frequency is 10Hz, the ultrasonic direction is due north, and the distance between ultrasonic anemometer (csat3) and CO2 / H2O analyzer (li7500a) is 17cm. The original observation data of eddy correlator is 10Hz, and the released data is the 30 minute data processed by eddypro software. The main processing steps include: field value elimination, delay time correction, coordinate rotation (quadratic coordinate rotation), frequency response correction, ultrasonic virtual temperature correction and density (WPL) correction. At the same time, the quality of each flux value is evaluated, mainly the atmospheric stability( Δ St) and turbulence similarity characteristics (ITC). The 30min flux value output by eddypro software is also screened: (1) eliminate the data when the instrument is wrong; (2) Eliminate the data with a loss rate of more than 10% every 30min in the 10Hz original data. The average period of observation data is 30 minutes, 48 data a day, and the missing data is marked as - 6999. Data from September 10 to October 22 are missing. The published observation data include: date / time, wind direction WDIR (°), horizontal wind speed wnd (M / s), standard deviation of lateral wind speed STD_ Uy (M / s), ultrasonic virtual temperature TV (℃), water vapor density H2O (g / m3), carbon dioxide concentration CO2 (mg / m3), friction velocity ustar (M / s), Obukhov length L (m), sensible heat flux HS (w / m2), latent heat flux Le (w / m2), carbon dioxide flux FC (mg / (M2S)), quality identification QA of sensible heat flux_ HS, quality identification of latent heat flux QA_ Le, quality identification QA of carbon dioxide flux_ Fc。 The quality identification of sensible heat, latent heat and carbon dioxide flux is divided into nine levels (quality identification 1-3 has good data quality, 4-6 has good data quality, 7-8 has poor data quality (better than interpolated data), and 9 has poor data quality). The meaning of data time, for example, 0:30 represents the average of 0:00-0:30; The data is stored in *. XLS format.

    2021-10-12 280 29

  • Cold and Arid Research Network of Lanzhou university (eddy covariance system of Suganhu station, 2020)

    Cold and Arid Research Network of Lanzhou university (eddy covariance system of Suganhu station, 2020)

    The data set includes the eddy correlator observation data of suganhu station of Lanzhou University cold and arid area scientific observation network of Lanzhou University from January 1, 2020 to December 31, 2020. The station is located in Sugan lake, Gansu Province, with wetland on the underlying surface. The longitude and latitude of the observation point are 94.12e, 38.99n and 2823m above sea level. The frame height of eddy correlator is 4m, the sampling frequency is 10Hz, the ultrasonic direction is due north, and the distance between ultrasonic anemometer (csat3) and CO2 / H2O analyzer (li7500a) is 17cm. The original observation data of eddy correlator is 10Hz, and the released data is the 30 minute data processed by eddypro software. The main processing steps include: field value elimination, delay time correction, coordinate rotation (quadratic coordinate rotation), frequency response correction, ultrasonic virtual temperature correction and density (WPL) correction. At the same time, the quality of each flux value is evaluated, mainly the atmospheric stability( Δ St) and turbulence similarity characteristics (ITC). The 30min flux value output by eddypro software is also screened: (1) eliminate the data when the instrument is wrong; (2) Eliminate the data with a loss rate of more than 10% every 30min in the 10Hz original data. The average period of observation data is 30 minutes, 48 data a day, and the missing data is marked as - 6999. The published observation data include: date / time, wind direction WDIR (°), horizontal wind speed wnd (M / s), standard deviation of lateral wind speed STD_ Uy (M / s), ultrasonic virtual temperature TV (℃), water vapor density H2O (g / m3), carbon dioxide concentration CO2 (mg / m3), friction velocity ustar (M / s), Obukhov length L (m), sensible heat flux HS (w / m2), latent heat flux Le (w / m2), carbon dioxide flux FC (mg / (M2S)), quality identification QA of sensible heat flux_ HS, quality identification of latent heat flux QA_ Le, quality identification QA of carbon dioxide flux_ Fc。 The quality identification of sensible heat, latent heat and carbon dioxide flux is divided into nine levels (quality identification 1-3 has good data quality, 4-6 has good data quality, 7-8 has poor data quality (better than interpolated data), and 9 has poor data quality). The meaning of data time, for example, 0:30 represents the average of 0:00-0:30; The data is stored in *. XLS format.

    2021-10-12 267 27

  • Cold and Arid Research Network of Lanzhou university (eddy covariance system of Sidalong station, 2020)

    Cold and Arid Research Network of Lanzhou university (eddy covariance system of Sidalong station, 2020)

    This dataset contains the flux measurements from the Sidalong station eddy covariance system (EC) in the middle reaches of the Heihe integrated observatory network from Mar 26 to Dec 31 in 2020. The site (99.926E, 38.428N) was located on a forest in the Kangle Sunan, which is near Zhangye city, Gansu Province. The elevation is 3146 m. The EC was installed at a height of 4.0 m above the canopy , and the sampling rate was 10 Hz. The sonic anemometer faced north, and the separation distance between the sonic anemometer and the CO2/H2O gas analyzer (CSAT3&Li7500A) was 0.17 m. The raw data acquired at 10 Hz were processed using the Eddypro post-processing software, including the spike detection, lag correction of H2O/CO2 relative to the vertical wind component, sonic virtual temperature correction, coordinate rotation (2-D rotation), corrections for density fluctuation (Webb-Pearman-Leuning correction), and frequency response correction. The EC data were subsequently averaged over 30 min periods. The observation data quality was divided into three classes according to the quality assessment method of stationarity (Δst) and the integral turbulent characteristics test (ITC): class 1-3 (high quality), class 4-6 (good), class 7-8 (poor, better than gap filling data), class9 (rejected). In addition to the above processing steps, the half-hourly flux data were screened in a four-step procedure: (1) data from periods of sensor malfunction were rejected; (2) data collected before or after 1 h of precipitation were rejected; (3) incomplete 30 min data were rejected when the missing data constituted more than 3% of the 30 min raw record; and (4) data were rejected at night when the friction velocity (u*) was less than 0.1 m/s. There were 48 records per day, and the missing data were replaced with -6999. Suspicious data were marked in red. The released data contained the following variables: data/time, wind direction (Wdir, °), wind speed (Wnd, m/s), the standard deviation of the lateral wind (Std_Uy, m/s), virtual temperature (Tv, ℃), H2O mass density (H2O, g/m3), CO2 mass density (CO2, mg/m3), friction velocity (ustar, m/s), stability (z/L), sensible heat flux (Hs, W/m2), latent heat flux (LE, W/m2), carbon dioxide flux (Fc, mg/ (m2s)), quality assessment of the sensible heat flux (QA_Hs), quality assessment of the latent heat flux (QA_LE), and quality assessment of the carbon flux (QA_Fc). In this dataset, the time of 0:30 corresponds to the average data for the period between 0:00 and 0:30; the data were stored in *.xls format. Detailed information can be found in the suggested references.

    2021-10-12 227 23

  • Cold and Arid Research Network of Lanzhou university (eddy covariance system of Minqin station, 2020)

    Cold and Arid Research Network of Lanzhou university (eddy covariance system of Minqin station, 2020)

    The data set contains the observation data of vortex correlator at Minqin station of cold and arid area scientific observation network of Lanzhou University from January 1, 2020 to December 31, 2020. The station is located in Minqin County, Wuwei City, Gansu Province, between Badain Jaran Desert and Tengger Desert in Western China. The longitude and latitude of the observation point are 103.668e, 39.208n and 1020m above sea level. The frame height of eddy correlator is 4m, the sampling frequency is 10Hz, the ultrasonic direction is due north, and the distance between ultrasonic anemometer (csat3) and CO2 / H2O analyzer (li7500a) is 17cm. The original observation data of eddy correlator is 10Hz, and the released data is the 30 minute data processed by eddypro software. The main processing steps include: field value elimination, delay time correction, coordinate rotation (quadratic coordinate rotation), frequency response correction, ultrasonic virtual temperature correction and density (WPL) correction. At the same time, the quality of each flux value is evaluated, mainly the atmospheric stability( Δ St) and turbulence similarity characteristics (ITC). The 30min flux value output by eddypro software is also screened: (1) eliminate the data when the instrument is wrong; (2) Eliminate the data with a loss rate of more than 10% every 30min in the 10Hz original data. The average period of observation data is 30 minutes, 48 data a day, and the missing data is marked as - 6999. The published observation data include: date / time, wind direction WDIR (°), horizontal wind speed wnd (M / s), standard deviation of lateral wind speed STD_ Uy (M / s), ultrasonic virtual temperature TV (℃), water vapor density H2O (g / m3), carbon dioxide concentration CO2 (mg / m3), friction velocity ustar (M / s), Obukhov length L (m), sensible heat flux HS (w / m2), latent heat flux Le (w / m2), carbon dioxide flux FC (mg / (M2S)), quality identification QA of sensible heat flux_ HS, quality identification of latent heat flux QA_ Le, quality identification QA of carbon dioxide flux_ Fc。 The quality identification of sensible heat, latent heat and carbon dioxide flux is divided into nine levels (quality identification 1-3 has good data quality, 4-6 has good data quality, 7-8 has poor data quality (better than interpolated data), and 9 has poor data quality). The meaning of data time, for example, 0:30 represents the average of 0:00-0:30; The data is stored in *. XLS format.

    2021-10-12 254 23

  • Night light data on the Tibetan Plateau (2000, 2005, 2010)

    Night light data on the Tibetan Plateau (2000, 2005, 2010)

    The data include the night light data of Tibetan Plateau with a spatial resolution of 1km*1km, a temporal resolution of 5 years and a time coverage of 2000, 2005 and 2010.The data came from Version 4 dmsp-ols products. DMSP/OLS sensors took a unique approach to collect radiation signals generated by night lights and firelight.DMSP/OLS sensors, working at night, can detect low-intensity lights emitted by urban lights, even small-scale residential areas and traffic flows, and distinguish them from dark rural backgrounds.Therefore, DMSP/OLS nighttime light images can be used as a representation of human activities and become a good data source for human activity monitoring and research.

    2021-09-15 1786 48

  • Surface energy balance based global land evapotranspiration (EB-ET 2000-2017)

    Surface energy balance based global land evapotranspiration (EB-ET 2000-2017)

    Daily and Monthly evapotranspiration (5km x 5km spatial resolution) for global land area was derived from satellite data and a surface energy balance method (EB). The global 5 km daily and monthly ET dataset is produced with the revised SEBS algorithm in Chen et al. 2019 JGR and Chen et al. 2013 (JAMC). For how to obtain seamless daily evaporation data by thermal infrared, please refer to Chen et al. 2021 JGR. This paper also compares different evaporation products. The results show that this product is significantly better than Landflux, GLEAM, MOD16, GLDAS and ERA-Interim products in irrigation area. The downscaling of reanalysis forcing data is detailed in this paper. MODIS LST, NDVI, Global forest height, GlobAlbedo, GLASS LAI have been used in this ET calculation. The ET dataset will be updated to near-present with the availability of input dataset. The global 5 km sensible heat flux, net radiation, latent heat flux will be open with the email contact with Dr. Xuelong Chen. Daily ET File name: 20001201-ET-V1.mat, 2000-year, 12-month,01-day, ET-Evapotranspiration, V1-version 1;unit: mm/day (unit8 need transfer to single or double and should be divided by 10);data type: unit8 was used to save the disk space, 255 is used for ocean and water body pixels. Monthly ET File name: ETm200012-ET-V1.mat, 2000-year, 12-month, ET-Evapotranspiration, V1-version 1;unit: mm/month (int16 need transfer to single or double and should be divided by 10);data type: int16 was used to save the disk space, 0 is used for ocean and water body pixels. The daily ET dataset is produced with a similar method and satellite data as in Chen, X., et al., 2014: Development of a 10 year (2001–2010) 0.1° dataset of land-surface energy balance for mainland China, Atmos. Chem. Phys., 14, 13097–13117, doi:10.5194/acp-14-13097-2014. The calculation of roughness length and kB_1 for global land were updated by the method in Chen, X., et al, 2019, A Column Canopy‐Air Turbulent Diffusion Method for Different Canopy Structures, Journal of Geophysical Research: Atmospheres, 2019.01.15, 124. Most of the satellite input data were from MODIS. Meteorological data was from ERA-Interim. Global canopy height information was derived from GLAS and MODIS NDVI. The daily ET has a mean bias (MB) of 0.04 mm/day, RMSE is 1.56 (±0.25) mm/day.

    2021-09-01 4012 180

  • Grading map of agricultural suitability on the Tibet Plateau (2018)

    Grading map of agricultural suitability on the Tibet Plateau (2018)

    This study takes the land resources in the Qinghai-Tibet Plateau as the evaluation object, and clarifies the current situation in the region suitable for agriculture, forestry, animal husbandry production and the quantity, quality and distribution of the reserve land resources. Through field investigations, collect relevant data from the study area, and combine relevant literature and expert experience to determine the evaluation factors (altitude, slope, annual precipitation, accumulated temperature, sunshine hours, soil effective depth, texture, erosion, vegetation type, NDVI). The grading and standardization are carried out, and the weights of each evaluation factor are determined by principal component analysis. The weighted index and model are used to determine the total score of the evaluation unit. Finally, the ArcGis natural discontinuity classification method is used to obtain the Qingshang Plateau. And the grades of farmland, forestry and grassland suitability drawings of the Qinghai-Tibet Plateau with a resolution of 90m were given. Finally, the results are verified and analyzed.

    2021-08-30 2874 85

  • Glacier coverage data  on the Tibetan Plateau  in 1970s (TPG1976, Version 1.0)

    Glacier coverage data on the Tibetan Plateau in 1970s (TPG1976, Version 1.0)

    The Tibetan Plateau Glacial Data -TPG1976 is a glacial coverage data on the Tibetan Plateau in the 1970s. It was generated by manual interpretation from Landsat MSS multispectral image data. The temporal coverage was mainly from 1972 to 1979 by 60 m spatial resolution. It involved 205 scenes of Landsat MSS/TM. There were 189 scenes(92% coverage on TP)in 1972-79,including 116 scenes in 1976/77 (61% of all the collected satellite data).As high quality of MSS data is not accessible due to cloud and snow effects in the South-east Tibetan Plateau, earlier Landsat TM data was collected for usage, including 14 scenes of 1980s(1981,1986-89,which covers 6.5% of TP) and 2 scenes in 1994(by 1.5% coverage on TP).Among all satellite data,77% was collected in winter with the minimum effects of cloud and seasonal snow. The most frequent year in this period was defined as the reference year for the mosaic image: i.e. 1976. Glacier outlines were digitized on-screen manually from the 1976 image mosaic, relying on false-colour image composites (MSS: red, green and blue (RGB) represented by bands 321; TM: RGB by bands 543), which allowed us to distinguish ice/snow from cloud. Debris-free ice was distinguished from the debris and debris-covered ice by its higher reflectance. Debris-covered ice was not delineated in this data. The delineated glacier outlines were compared with band-ratio results, and validated by overlapping them onto Google Earth imagery, SRTM DEM, topographic maps and corresponding satellite images. For areas with mountain shadows and snow cover, they were verified by different methods using data from different seasons. For glaciers in deep shadow, Google EarthTM imagery from different dates was used as the reference for manual delineation. Steep slopes or headwalls were also excluded in the TPG1976. Areas that appeared in any of these sources to have the characteristics of exposed ground/basement/bed rock were manually delineated as non-glacier, and were also cross-checked with CGI-1 and CGI-2. Steep hanging glaciers were included in TPG1976 if they were identifiable on images in all three epochs (i.e. TPG1976, TPG2001, and TPG2013). The accuracy of manual digitization was controlled within one half-pixel. All glacier areas were calculated on the WGS84 spheroid in an Albers equal-area map projection centred at (95°E, 30°N) with standard parallels at 15°N and 65°N. Our results showed that the relative deviation of manual interpretation was less than 6.4% due to the 60 m spatial resolution images.

    2021-08-30 4448 80

  • Glacier coverage data on the Tibetan Plateau in 2013 (TPG2013, Version1.0)

    Glacier coverage data on the Tibetan Plateau in 2013 (TPG2013, Version1.0)

    The Tibetan Plateau Glacier Data –TPG2013 is a glacial coverage data on the Tibetan Plateau around 2013. 128 Landsat 8 Operational Land Imager (OLI) images were selected with 30-m spatial resolution, for comparability with previous and current glacier inventories. Besides, about 20 images acquired in 2014 were used to complete the full coverage of the TP. The most frequent year in this period was defined as the reference year for the mosaic image: i.e. 2013. Glacier outlines were digitized on-screen manually from the 2013 image mosaic, relying on false-colour image composites (RGB by bands 654), which allowed us to distinguish ice/snow from cloud. Debris-free ice was distinguished from the debris and debris-covered ice by its higher reflectance. Debris-covered ice was not delineated in this data. [To minimize the effects of snow or cloud cover on glacierized areas, high-resolution (30 m spatial resolution and 4-day repetition cycle) images were also used for reference in glacier delineation from the Chinese satellites HJ-1A and HJ-1B, which were launched on Sep.6th 2008. Both carried as payload two 4-band CCD cameras with swath width 700 km (360 km per camera). All HJ-1A/1B data in 2012, 2013 and 2014 (65 scenes, Fig.S1, Table S1) were from China Centre for Resources Satellite Data and Application (CRESDA; http://www.cresda.com/n16/n92006/n92066/n98627/index.html). Each scene was orthorectified with respect to the 30m-resolution digital elevation model (DEM) of the Shuttle Radar Topography Mission (SRTM) and Landsat images.] The delineated glacier outlines were compared with band-ratio (e.g. TM3/TM5) results, and validated by overlapping them onto Google Earth imagery, SRTM DEM, topographic maps and corresponding satellite images. Topographic maps from the 1970s and all available satellite images (including Google EarthTM imagery and HJ-1A/1B satellite data) were used as base reference data. For areas with mountain shadows and snow cover, they were verified by different methods using data from different seasons. For glaciers in deep shadow, Google EarthTM imagery from different dates was used as the reference for manual delineation. Steep slopes or headwalls were also excluded in the TPG2013. Areas that appeared in any of these sources to have the characteristics of exposed ground/basement/bed rock were manually delineated as non-glacier, and were also cross-checked with CGI-1 and CGI-2. Steep hanging glaciers were included in TPG2013 if they were identifiable on images in all three epochs (i.e. TPG1976, TPG2001, and TPG2013). The accuracy of manual digitization was controlled within one half-pixel. All glacier areas were calculated on the WGS84 spheroid in an Albers equal-area map projection centred at (95°E, 30°N) with standard parallels at 15°N and 65°N. Our results showed that the relative deviation of manual interpretation was less than 3.9%.

    2021-08-30 4071 101

  • Multiyear in-situ L-band microwave radiometry of land surface processes on the Tibetan Plateau (2016-2019)

    Multiyear in-situ L-band microwave radiometry of land surface processes on the Tibetan Plateau (2016-2019)

    This dataset contains measurements of L-band brightness temperature by an ELBARA-III microwave radiometer in horizontal and vertical polarization, profile soil moisture and soil temperature, turbulent heat fluxes, and meteorological data from the beginning of 2016 till August 2019, while the experiment is still continuing. Auxiliary vegetation and soil texture information collected in dedicated campaigns are also reported. This dataset can be used to validate the Soil Moisture and Ocean Salinity (SMOS) and Soil Moisture Active Passive (SMAP) satellite based observations and retrievals, verify radiative transfer model assumptions and validate land surface model and reanalysis outputs, retrieve soil properties, as well as to quantify land-atmosphere exchanges of energy, water and carbon and help to reduce discrepancies and uncertainties in current Earth System Models (ESM) parameterizations. ELBARA-III horizontal and vertical brightness temperature are computed from measured radiometer voltages and calibrated internal noise temperatures. The data is reliable, and its quality is evaluated by 1) Perform ‘histogram test’ on the voltage samples (raw-data) of the detector output at sampling frequency of 800 Hz. Statistics of the histogram test showed no non-Gaussian Radio Frequency Interference (RFI) were found when ELBAR-III was operated. 2) Check the voltages at the antenna ports measured during sky measurements. Results showed close values. 3) Check the instrument internal temperature, active cold source temperature and ambient temperature. 3) Analysis the angular behaviour of the processed brightness temperatures. -Temporal resolution: 30 minutes -Spatial resolution: incident angle of observation ranges from 40° to 70° in step of 5°. The area of footprint ranges between 3.31 m^2 and 43.64 m^2 -Accuracy of Measurement: Brightness temperature, 1 K; Soil moisture, 0.001 m^3 m^-3; Soil temperature, 0.1 °C -Unit: Brightness temperature, K; Soil moisture, m^3 m^-3; Soil temperature, °C/K

    2021-08-03 2456 78

  • SRTM  DEM data on the Tibetan Plateau (2012)

    SRTM DEM data on the Tibetan Plateau (2012)

    This data set is mainly the SRTM terrain data obtained by International Center for Tropical Agriculture (CIAT)with the new interpolation algorithm, which better fills the data void of SRTM 90. The interpolation algorithm was adpoted from Reuter et al. (2007). SRTM's data organization method is as follows: divide a file into 24 rows (-60 to 60 degrees) and 72 columns (-180 to 180 degrees) in every 5 degrees of latitude and longitude grid, and the data resolution is 90 meters. Data usage: SRTM data are expressed as elevation values with 16-bit values (-/+/32767 m), maximum positive elevation of 9000m, and negative elevation (12000m below sea level). For null data use the -32767 standard.

    2021-08-02 5513 427

  • Administrative boundaries data at 1:1000 000 in the Sanjiangyuan region (2017)

    Administrative boundaries data at 1:1000 000 in the Sanjiangyuan region (2017)

    This data is derived from the National Basic Geographic Information Resources Catalogue Service System, which provides 11 million national basic geographic databases free of charge by the National Basic Geographic Information Center in November 2017. We have spliced and cut the source of the three rivers as a whole, so as to facilitate the use of the study of the source area of the three rivers. This data set is composed of 1:1 million administrative boundary layers (BOUA) and administrative boundary line layers (BOUL) in Sanjiangyuan area. Names and definitions of BOUA attribute items: Attribute Item Description Fill in Example PAC Administrative Division Code 513230 NAME Name Rangtang County Names and definitions of BOUL attribute items: Attribute Item Description Fill in Example GB National Standard Classification Code 630200 The meaning of BOUL attribute items: Attribute Item Code Description GB 630200 Provincial Boundary GB 640200 District, Municipal and State Administrative Region GB 650201 County administrative boundaries (determined)

    2021-07-29 5763 232

  • County level statistics data of Tibetan Plateau (1980-2015)

    County level statistics data of Tibetan Plateau (1980-2015)

    The data set contains agricultural economic data of all counties and regions in the Tibetan Plateau in 1980-2015, and covering the total number of households and total population in rural areas, agricultural population, rural labor force, cultivated land, paddy field area, the dry land area, power of agricultural machinery, agricultural vehicles, mechanical ploughing area, irrigation area, consumption of chemical fertilizers electricity use, gross output value of agriculture, forestry, animal husbandry and fishery, the output of cattle, pig, sheep, meat, poultry, and fish, the sown area of grain, the output of grain, cotton, oil and all kinds of crops, and characteristic agricultural products and livestock production and other relevant data.The data came from the statistical yearbook of the provinces included in the Tibetan Plateau.The data are of good quality and can be used to analyze the socio-economic and agricultural development of qinghai-tibet plateau.

    2021-07-29 4457 1414

  • Cold and Arid Research Network of Lanzhou university (phenology camera observation data set of Liancheng Station, 2020)

    Cold and Arid Research Network of Lanzhou university (phenology camera observation data set of Liancheng Station, 2020)

    The data set contains the phenological camera observation data of Liancheng of the cold and arid area scientific observation network of Lanzhou University in Datong River Basin from March 1, 2020 to December 31, 2020. The longitude and latitude of the observation points are 102.737e, 36.692n and the altitude is 2903m. The data is processed by the software package independently developed by Beijing Normal University. The phenological camera collects data in a downward manner. The shooting data resolution is 2592 * 1944, and the shooting time and frequency can be specified. For the calculation of greenness index phenological period, it is necessary to calculate the relative greenness index according to the region of interest (GCC, green chromatographic coordinate formula is GCC = g / (R + G + b), and R, G and B are the pixel values of red, green and blue channels of the image), then fill in the invalid values and filter and smooth them, and finally determine the key phenological period parameters according to the growth curve fitting, such as the start date, peak End date of growing season, etc; For the coverage, firstly, the data is preprocessed, the image with less strong illumination is selected, and then the image is divided into vegetation and soil. The proportion of vegetation pixels in the calculation area of each image is calculated as the corresponding coverage of the image. After the time series data is extracted, the original coverage data is smoothed and filtered according to the time window specified by the user, The filtered result is the final time series coverage. This data set includes relative greenness index (GCC) and coverage. Due to the built-in clock error of phenological camera, the images before March 1 are taken at night and cannot be used, so the data is missing.

    2021-07-28 249 17