Multi-scale surface flux and meteorological observation datasets in the Haihe River Basin

Brief Introduction: In order to quantitatively reveal the surface water-heat flux exchange characteristics of the main underlying surface of the Haihe River Basin, and also provide the pixel-scale “ground truth value” for the verification of surface evapotranspiration by remote sensing, since 2006, the forest land in the northern mountainous areas of the Haihe River Basin has been successively Beijing Miyun) has established a multi-scale surface flux and meteorological observation network with farmland (Hebei Huailai), central suburban farmland (Beijing Daxing), and southern plain farmland (Hebei Guantao), covering the main underlying surface of the Haihe River Basin.

Number of Datasets: 47

  • Ground-based  dataset of vegetation water content in Shandian watershed (2018)

    Ground-based dataset of vegetation water content in Shandian watershed (2018)

    This vegetation water content data set is derived from the ground synchronous observation in the Luanhe River Basin soil moisture remote sensing experiment, including 55 sampled plots.The vegetation types involved in these sampled plots include grass, corn, potatoes, naked oats and carrots. The data measurement time is from September 13, 2018 to September 26, 2018.

    2021-09-02 206 27

  • Multi-scale surface flux and meteorological elements observation dataset in the Hai River Basin(Huailai station-automatic weather station-10m tower, 2019)

    Multi-scale surface flux and meteorological elements observation dataset in the Hai River Basin(Huailai station-automatic weather station-10m tower, 2019)

    This dataset includes data obtained from the automatic weather station (AWS) at the observation system of Meteorological elements of Huailai station between January 1 and December 31, 2019. The site (115.7880° E, 40.3491° N) was located on a maize surface, which is near Donghuayuan Town of Huailai city in Hebei Province. The elevation is 480 m. The installation heights and orientations of different sensors and measured quantities were as follows: air temperature and humidity profile (5 m, north), wind speed and direction profile (10 m, north), air pressure (in the box), rain gauge (10 m), four-component radiometer (5 m, south), two infrared temperature sensors (5 m, south, vertically downward), soil heat flux (-0.06 m), soil temperature profile (0, -0.02, -0.04, -0.1, -0.2, -0.4, -0.8, -1.2, and -1.6 m), soil moisture profile (-0.02, -0.04, -0.1, -0.2, -0.4, -0.8, -1.2, and -1.6 m), and a TCAV averaging soil thermocouple probe (-0.02, -0.04 m). The observations included the following: air temperature and humidity (Ta_5 m; RH_5 m) (℃ and %, respectively), wind speed (Ws_10 m) (m/s), wind direction (WD_10 m) (°), air pressure (press) (hpa), precipitation (rain) (mm), four-component radiation (DR, incoming shortwave radiation; UR, outgoing shortwave radiation; DLR_Cor, incoming longwave radiation; ULR_Cor, outgoing longwave radiation; Rn, net radiation) (W/m2), infrared temperature (IRT_1 and IRT_2) (℃), soil heat flux (Gs_1, Gs_2 and Gs_3) (W/m2), soil temperature (Ts_0 cm, Ts_2 cm, Ts_4 cm, Ts_10 cm, Ts_20 cm, Ts_40 cm, Ts_80 cm, Ts_120 cm, and Ts_160 cm) (℃), soil moisture (Ms_2 cm, Ms_4 cm, Ms_10 cm, Ms_20 cm, Ms_40 cm, Ms_80 cm, Ms_120 cm, and Ms_160 cm) (%, volumetric water content), and average soil temperature (TCAV, ℃). The data processing and quality control steps were as follows: (1) The AWS data were averaged over intervals of 10 min for a total of 144 records per day. The missing data were denoted by -6999. (2) Data in duplicate records were rejected. (3) Unphysical data were rejected. (4) The data marked in red are problematic data. (5) The format of the date and time was unified, and the date and time were collected in the same column, for example, date and time: 2018-6-10 10:30. (6) Finally, the naming convention was AWS+ site no. Moreover, suspicious data were marked in red. For more information, please refer to Guo et al. (2020) (for sites information), Liu et al. (2013) (for data processing) in the Citation section.

    2021-01-08 1701 53

  • Multi-scale surface flux and meteorological elements observation dataset in the Hai River Basin (Huailai station-large aperture scintillometer, 2019)

    Multi-scale surface flux and meteorological elements observation dataset in the Hai River Basin (Huailai station-large aperture scintillometer, 2019)

    This dataset contains the flux measurements from the large aperture scintillometer (LAS) at Huailai station. There were two types of LASs: German BLS450 and zzLAS. The observation periods were from January 1 to December 31, 2019. The site ( (north: 115.7825° E, 40.3522° N; south: 115.7880° E, 40.3491° N) was located in the Donghuahuan town of Huailai city, Hebei Province. The elevation is 480 m. The underlying surface between the two towers contains mainly maize. The effective height of the LASs was 14 m; the path length was 1870 m. Data were sampled at 1 min intervals. Raw data acquired at 1 min intervals were processed and quality-controlled. The data were subsequently averaged over 30 min periods. The main quality control steps were as follows. (1) The data were rejected when Cn2 was beyond the saturated criterion. (2) Data were rejected when the demodulation signal was small. (3) Data were rejected within 1 h of precipitation. (4) Data were rejected at night when weak turbulence occurred (u* was less than 0.1 m/s). The sensible heat flux was iteratively calculated by combining with meteorological data and based on Monin-Obukhov similarity theory. There were several instructions for the released data. (1) The data were primarily obtained from BLS450 measurements; missing flux measurements from the BLS450 were filled with measurements from the zzLAS. Missing data were denoted by -6999. (2) The dataset contained the following variables: data/time (yyyy-mm-dd hh:mm:ss), the structural parameter of the air refractive index (Cn2, m-2/3), and the sensible heat flux (H_LAS, W/m^2). (3) In this dataset, the time of 0:30 corresponds to the average data for the period between 0:00 and 0:30; the data were stored in *.xls format. Moreover, suspicious data were marked in red. For more information, please refer to Guo et al. (2020) (for sites information), Liu et al. (2013) (for data processing) in the Citation section.

    2021-01-08 1472 17

  • Multi-scale surface flux and meteorological elements observation dataset in the Hai River Basin(Huailai station-automatic weather station-10m tower, 2018)

    Multi-scale surface flux and meteorological elements observation dataset in the Hai River Basin(Huailai station-automatic weather station-10m tower, 2018)

    This dataset includes data obtained from the automatic weather station (AWS) at the observation system of Meteorological elements of Huailai station between January 1 and December 31, 2017. The site (115.7880° E, 40.3491° N) was located on a maize surface, which is near Donghuayuan Town of Huailai city in Hebei Province. The elevation is 480 m. The installation heights and orientations of different sensors and measured quantities were as follows: air temperature and humidity profile (5 m, north), wind speed and direction profile (10 m, north), air pressure (in the box), rain gauge (10 m), four-component radiometer (5 m, south), two infrared temperature sensors (5 m, south, vertically downward), soil heat flux (-0.06 m), soil temperature profile (0, -0.02, -0.04, -0.1, -0.2, -0.4, -0.8, -1.2, and -1.6 m), soil moisture profile (-0.02, -0.04, -0.1, -0.2, -0.4, -0.8, -1.2, and -1.6 m), and a TCAV averaging soil thermocouple probe (-0.02, -0.04 m). The observations included the following: air temperature and humidity (Ta_5 m; RH_5 m) (℃ and %, respectively), wind speed (Ws_10 m) (m/s), wind direction (WD_10 m) (°), air pressure (press) (hpa), precipitation (rain) (mm), four-component radiation (DR, incoming shortwave radiation; UR, outgoing shortwave radiation; DLR_Cor, incoming longwave radiation; ULR_Cor, outgoing longwave radiation; Rn, net radiation) (W/m2), infrared temperature (IRT_1 and IRT_2) (℃), soil heat flux (Gs_1, Gs_2 and Gs_3) (W/m2), soil temperature (Ts_0 cm, Ts_2 cm, Ts_4 cm, Ts_10 cm, Ts_20 cm, Ts_40 cm, Ts_80 cm, Ts_120 cm, and Ts_160 cm) (℃), soil moisture (Ms_2 cm, Ms_4 cm, Ms_10 cm, Ms_20 cm, Ms_40 cm, Ms_80 cm, Ms_120 cm, and Ms_160 cm) (%, volumetric water content), and average soil temperature (TCAV, ℃). The data processing and quality control steps were as follows: (1) The AWS data were averaged over intervals of 10 min for a total of 144 records per day. The missing data were denoted by -6999. (2) Data in duplicate records were rejected. (3) Unphysical data were rejected. (4) The data marked in red are problematic data. (5) The format of the date and time was unified, and the date and time were collected in the same column, for example, date and time: 2017-6-10 10:30. (6) Finally, the naming convention was AWS+ site no. Moreover, suspicious data were marked in red. For more information, please refer to Yang et al. (2015) (for sites information), Liu et al. (2013) (for data processing) in the Citation section.

    2021-01-08 1454 57

  • Multi-scale surface flux and meteorological elements observation dataset in the Hai River Basin(Huailai station-automatic weather station-40m tower, 2019)

    Multi-scale surface flux and meteorological elements observation dataset in the Hai River Basin(Huailai station-automatic weather station-40m tower, 2019)

    This dataset obtained from an observation system of Meteorological elements gradient of Huailai station from January 1 to December 31, 2019. The site (115.7923° E, 40.3574° N) was located on a cropland (maize surface) which is near Donghuayuan town of Huailai city, Hebei Province. The elevation is 480 m. The installation heights and orientations of different sensors and measured quantities were as follows: air temperature and humidity profile (3, 5, 10, 15, 20, 30, and 40 m, towards north), wind speed and direction profile (3, 5, 10, 15, 20, 30, and 40 m, towards north), air pressure (in the box), rain gauge (3 m, south of tower), four-component radiometer (4 m, south of tower), two infrared temperature sensors (4 m, south of tower, vertically downward), photosynthetically active radiation (4 m, south of tower, vertically upward), soil heat flux (3 duplicates, -0.06 m), a TCAV averaging soil thermocouple probe (-0.02, -0.04 m), soil temperature profile (-0.02, -0.04, -0.1, -0.2, -0.4, -0.8, -1.2, and -1.6 m), soil moisture profile (-0.02, -0.04, -0.1, -0.2, -0.4, -0.8, -1.2, and -1.6 m). The observations included the following: air temperature and humidity (Ta_3 m, Ta_5 m, Ta_10 m, Ta_15 m, Ta_20 m, Ta_30 m, and Ta_40 m; RH_3 m, RH_5 m, RH_10 m, RH_15 m, RH_20 m, RH_30 m, and RH_40 m) (℃ and %, respectively), wind speed (Ws_3 m, Ws_5 m, Ws_15 m, Ws_20 m, Ws_30 m, and Ws_40 m) (m/s), air pressure (press) (hpa), precipitation (rain) (mm), four-component radiation (DR, incoming shortwave radiation; UR, outgoing shortwave radiation; DLR_Cor, incoming longwave radiation; ULR_Cor, outgoing longwave radiation; Rn, net radiation) (W/m^2), infrared temperature (IRT_1 and IRT_2) (℃), photosynthetically active radiation (PAR) (μmol/ (s m-2)), average soil temperature (TCAV, ℃), soil heat flux (Gs_1, Gs_2, and Gs_3) (W/m^2), soil temperature (Ts_2 cm, Ts_4 cm, Ts_10 cm, Ts_20 cm, Ts_40 cm, Ts_80 cm, Ts_120 cm, and Ts_160 cm) (℃), soil moisture (Ms_2 cm, Ms_4 cm, Ms_10 cm, Ms_20 cm, Ms_40 cm, Ms_80 cm, Ms_120 cm, and Ms_160 cm) (%, volumetric water content). The data processing and quality control steps were as follows: (1) The AWS data were averaged over intervals of 10 min for a total of 144 records per day. The missing data were denoted by -6999. (2) Data in duplicate records were rejected. (3) Unphysical data were rejected. (4) The data marked in red are problematic data. (5) The format of the date and time was unified, and the date and time were collected in the same column, for example, date and time: 2019-6-10 10:30. Moreover, suspicious data were marked in red. For more information, please refer to Guo et al. (2020) (for sites information), Liu et al. (2013) for data processing) in the Citation section.

    2021-01-08 1740 45

  • Multi-scale surface flux and meteorological elements observation dataset in the Hai River Basin(Huailai station-automatic weather station-40m tower, 2018)

    Multi-scale surface flux and meteorological elements observation dataset in the Hai River Basin(Huailai station-automatic weather station-40m tower, 2018)

    This dataset obtained from an observation system of Meteorological elements gradient of Huailai station from January 1 to December 31, 2018. The site (115.7923° E, 40.3574° N) was located on a cropland (maize surface) which is near Donghuayuan town of Huailai city, Hebei Province. The elevation is 480 m. The installation heights and orientations of different sensors and measured quantities were as follows: air temperature and humidity profile (3, 5, 10, 15, 20, 30, and 40 m, towards north), wind speed and direction profile (3, 5, 10, 15, 20, 30, and 40 m, towards north), air pressure (in the box), rain gauge (3 m, south of tower), four-component radiometer (4 m, south of tower), two infrared temperature sensors (4 m, south of tower, vertically downward), photosynthetically active radiation (4 m, south of tower, vertically upward), soil heat flux (3 duplicates, -0.06 m), a TCAV averaging soil thermocouple probe (-0.02, -0.04 m), soil temperature profile (-0.02, -0.04, -0.1, -0.2, -0.4, -0.8, -1.2, and -1.6 m), soil moisture profile (-0.02, -0.04, -0.1, -0.2, -0.4, -0.8, -1.2, and -1.6 m). The observations included the following: air temperature and humidity (Ta_3 m, Ta_5 m, Ta_10 m, Ta_15 m, Ta_20 m, Ta_30 m, and Ta_40 m; RH_3 m, RH_5 m, RH_10 m, RH_15 m, RH_20 m, RH_30 m, and RH_40 m) (℃ and %, respectively), wind speed (Ws_3 m, Ws_5 m, Ws_10 m, Ws_15 m, Ws_20 m, Ws_30 m, and Ws_40 m) (m/s), wind direction (WD_10 m) (°), air pressure (press) (hpa), precipitation (rain) (mm), four-component radiation (DR, incoming shortwave radiation; UR, outgoing shortwave radiation; DLR_Cor, incoming longwave radiation; ULR_Cor, outgoing longwave radiation; Rn, net radiation) (W/m^2), infrared temperature (IRT_1 and IRT_2) (℃), photosynthetically active radiation (PAR) (μmol/ (s m-2)), average soil temperature (TCAV, ℃), soil heat flux (Gs_1, Gs_2, and Gs_3) (W/m^2), soil temperature (Ts_2 cm, Ts_4 cm, Ts_10 cm, Ts_20 cm, Ts_40 cm, Ts_80 cm, Ts_120 cm, and Ts_160 cm) (℃), soil moisture (Ms_2 cm, Ms_4 cm, Ms_10 cm, Ms_20 cm, Ms_40 cm, Ms_80 cm, Ms_120 cm, and Ms_160 cm) (%, volumetric water content). The data processing and quality control steps were as follows: (1) The AWS data were averaged over intervals of 10 min for a total of 144 records per day. The missing data were denoted by -6999. (2) Data in duplicate records were rejected. (3) Unphysical data were rejected. (4) The data marked in red are problematic data. (5) The format of the date and time was unified, and the date and time were collected in the same column, for example, date and time: 2018-6-10 10:30. Moreover, suspicious data were marked in red. For more information, please refer to Guo et al. (2020) (for sites information), Liu et al. (2013) for data processing) in the Citation section.

    2021-01-08 1737 44

  • Multi-scale surface flux and meteorological elements observation dataset in the Hai River Basin (Huailai station-eddy covariance system-10m tower, 2019)

    Multi-scale surface flux and meteorological elements observation dataset in the Hai River Basin (Huailai station-eddy covariance system-10m tower, 2019)

    This dataset contains the flux measurements from the Huailai station eddy covariance system (EC) from January 1 to December 3 in 2019. The site (115.7880° E, 40.3491° N) was located in the maize surface, near Donghuayuan town of Huailai city in Hebei Province. The elevation is 480 m. The EC was installed at a height of 5 m, and the sampling rate was 10 Hz. The sonic anemometer faced north, and the separation distance between the sonic anemometer and the CO2/H2O gas analyzer (CSAT3&Li7500A) was 0.15 m. The raw data acquired at 10 Hz were processed using the Eddypro post-processing software, including the spike detection, lag correction of H2O/CO2 relative to the vertical wind component, sonic virtual temperature correction, coordinate rotation (2-D rotation), corrections for density fluctuation (Webb-Pearman-Leuning correction), and frequency response correction. The EC data were subsequently averaged over 30 min periods. The observation data quality was divided into three classes according to the quality assessment method of stationarity (Δst) and the integral turbulent characteristics test (ITC): class 1 (level 0: Δst<30 and ITC<30), class 2 (level 1: Δst<100 and ITC<100), and class 3 (level 2: Δst>100 and ITC>100), which represent high-, medium-, and low-quality data, respectively. In addition to the above processing steps, the half-hourly flux data were screened in a four-step procedure: (1) data from periods of sensor malfunction were rejected; (2) data collected before or after 1 h of precipitation were rejected; (3) incomplete 30 min data were rejected when the missing data constituted more than 10% of the 30 min raw record; and (4) data were rejected at night when the friction velocity (u*) was less than 0.1 m/s. There were 48 records per day, and the missing data were replaced with -6999. The released data contained the following variables: data/time, wind direction (Wdir, °), wind speed (Wnd, m/s), the standard deviation of the lateral wind (Std_Uy, m/s), virtual temperature (Tv, ℃), H2O mass density (H2O, g/m3), CO2 mass density (CO2, mg/m3), friction velocity (ustar, m/s), stability (z/L), sensible heat flux (Hs, W/m2), latent heat flux (LE, W/m2), carbon dioxide flux (Fc, mg/ (m2s)), quality assessment of the sensible heat flux (QA_Hs), quality assessment of the latent heat flux (QA_LE), and quality assessment of the carbon flux (QA_Fc). In this dataset, the time of 0:30 corresponds to the average data for the period between 0:00 and 0:30; the data were stored in *.xls format. Detailed information can be found in the suggested references. For more information, please refer to Guo et al. (2020) (for sites information), Liu et al. (2013) for data processing) in the Citation section.

    2021-01-08 1481 45

  • Multi-scale surface flux and meteorological elements observation dataset in the Hai River Basin (Huailai station-large aperture scintillometer, 2018)

    Multi-scale surface flux and meteorological elements observation dataset in the Hai River Basin (Huailai station-large aperture scintillometer, 2018)

    This dataset contains the flux measurements from the large aperture scintillometer (LAS) at Huailai station. There were two types of LASs: German BLS450 and zzLAS. The observation periods were from January 1 to December 31, 2018. The site ( (north: 115.7825° E, 40.3522° N; south: 115.7880° E, 40.3491° N) was located in the Donghuahuan town of Huailai city, Hebei Province. The elevation is 480 m. The underlying surface between the two towers contains mainly maize. The effective height of the LASs was 14 m; the path length was 1870 m. Data were sampled at 1 min intervals. Raw data acquired at 1 min intervals were processed and quality-controlled. The data were subsequently averaged over 30 min periods. The main quality control steps were as follows. (1) The data were rejected when Cn2 was beyond the saturated criterion. (2) Data were rejected when the demodulation signal was small. (3) Data were rejected within 1 h of precipitation. (4) Data were rejected at night when weak turbulence occurred (u* was less than 0.1 m/s). The sensible heat flux was iteratively calculated by combining with meteorological data and based on Monin-Obukhov similarity theory. There were several instructions for the released data. (1) The data were primarily obtained from BLS450 measurements; missing flux measurements from the BLS450 were filled with measurements from the zzLAS. Missing data were denoted by -6999. (2) The dataset contained the following variables: data/time (yyyy-mm-dd hh:mm:ss), the structural parameter of the air refractive index (Cn2, m-2/3), and the sensible heat flux (H_LAS, W/m^2). (3) In this dataset, the time of 0:30 corresponds to the average data for the period between 0:00 and 0:30; the data were stored in *.xls format. Moreover, suspicious data were marked in red. For more information, please refer to Guo et al. (2020) (for sites information), Liu et al. (2013) (for data processing) in the Citation section.

    2021-01-08 2558 25

  • Multi-scale surface flux and meteorological elements observation dataset in the Hai River Basin (Huailai station-eddy covariance system-40m tower, 2018)

    Multi-scale surface flux and meteorological elements observation dataset in the Hai River Basin (Huailai station-eddy covariance system-40m tower, 2018)

    This dataset contains the flux measurements from the Huailai station eddy covariance system (EC) from January 1 to December 31 in 2018. The site (115.7923° E, 40.3574°N) was located in the maize surface, near Donghuayuan town of Huailai city in Hebei Province. The elevation is 480 m. The EC was installed at a height of 3.5 m, and the sampling rate was 10 Hz. The sonic anemometer faced north, and the separation distance between the sonic anemometer and the CO2/H2O gas analyzer (CSAT3&EC150) was 0 m. The raw data acquired at 10 Hz were processed using the Eddypro post-processing software, including the spike detection, lag correction of H2O/CO2 relative to the vertical wind component, sonic virtual temperature correction, coordinate rotation (2-D rotation), corrections for density fluctuation (Webb-Pearman-Leuning correction), and frequency response correction. The EC data were subsequently averaged over 30 min periods. The observation data quality was divided into three classes according to the quality assessment method of stationarity (Δst) and the integral turbulent characteristics test (ITC): class 1 (level 0: Δst<30 and ITC<30), class 2 (level 1: Δst<100 and ITC<100), and class 3 (level 2: Δst>100 and ITC>100), which represent high-, medium-, and low-quality data, respectively. In addition to the above processing steps, the half-hourly flux data were screened in a four-step procedure: (1) data from periods of sensor malfunction were rejected; (2) data collected before or after 1 h of precipitation were rejected; (3) incomplete 30 min data were rejected when the missing data constituted more than 10% of the 30 min raw record; and (4) data were rejected at night when the friction velocity (u*) was less than 0.1 m/s. There were 48 records per day, and the missing data were replaced with -6999. Suspicious data were marked in red. There were lots of negative values of H2O density in winter where filling by -6999. The released data contained the following variables: data/time, wind direction (Wdir, °), wind speed (Wnd, m/s), the standard deviation of the lateral wind (Std_Uy, m/s), virtual temperature (Tv, ℃), H2O mass density (H2O, g/m3), CO2 mass density (CO2, mg/m3), friction velocity (ustar, m/s), stability (z/L), sensible heat flux (Hs, W/m2), latent heat flux (LE, W/m2), carbon dioxide flux (Fc, mg/ (m2s)), quality assessment of the sensible heat flux (QA_Hs), quality assessment of the latent heat flux (QA_LE), and quality assessment of the carbon flux (QA_Fc). In this dataset, the time of 0:30 corresponds to the average data for the period between 0:00 and 0:30; the data were stored in *.xls format. Detailed information can be found in the suggested references. For more information, please refer to Guo et al. (2020) (for sites information), Liu et al. (2013) for data processing) in the Citation section.

    2021-01-08 1452 33

  • Multi-scale surface flux and meteorological elements observation dataset in the Hai River Basin (Huailai station-eddy covariance system-10m tower, 2018)

    Multi-scale surface flux and meteorological elements observation dataset in the Hai River Basin (Huailai station-eddy covariance system-10m tower, 2018)

    This dataset contains the flux measurements from the Huailai station eddy covariance system (EC) from January 1 to December 31 in 2018. The site (115.7880° E, 40.3491° N) was located in the maize surface, near Donghuayuan town of Huailai city in Hebei Province. The elevation is 480 m. The EC was installed at a height of 5 m, and the sampling rate was 10 Hz. The sonic anemometer faced north, and the separation distance between the sonic anemometer and the CO2/H2O gas analyzer (CSAT3&Li7500A) was 0.15 m. The raw data acquired at 10 Hz were processed using the Eddypro post-processing software, including the spike detection, lag correction of H2O/CO2 relative to the vertical wind component, sonic virtual temperature correction, coordinate rotation (2-D rotation), corrections for density fluctuation (Webb-Pearman-Leuning correction), and frequency response correction. The EC data were subsequently averaged over 30 min periods. The observation data quality was divided into three classes according to the quality assessment method of stationarity (Δst) and the integral turbulent characteristics test (ITC): class 1 (level 0: Δst<30 and ITC<30), class 2 (level 1: Δst<100 and ITC<100), and class 3 (level 2: Δst>100 and ITC>100), which represent high-, medium-, and low-quality data, respectively. In addition to the above processing steps, the half-hourly flux data were screened in a four-step procedure: (1) data from periods of sensor malfunction were rejected; (2) data collected before or after 1 h of precipitation were rejected; (3) incomplete 30 min data were rejected when the missing data constituted more than 10% of the 30 min raw record; and (4) data were rejected at night when the friction velocity (u*) was less than 0.1 m/s. There were 48 records per day, and the missing data were replaced with -6999. The released data contained the following variables: data/time, wind direction (Wdir, °), wind speed (Wnd, m/s), the standard deviation of the lateral wind (Std_Uy, m/s), virtual temperature (Tv, ℃), H2O mass density (H2O, g/m3), CO2 mass density (CO2, mg/m3), friction velocity (ustar, m/s), stability (z/L), sensible heat flux (Hs, W/m2), latent heat flux (LE, W/m2), carbon dioxide flux (Fc, mg/ (m2s)), quality assessment of the sensible heat flux (QA_Hs), quality assessment of the latent heat flux (QA_LE), and quality assessment of the carbon flux (QA_Fc). In this dataset, the time of 0:30 corresponds to the average data for the period between 0:00 and 0:30; the data were stored in *.xls format. Detailed information can be found in the suggested references. For more information, please refer to Guo et al. (2020) (for sites information), Liu et al. (2013) for data processing) in the Citation section.

    2021-01-08 1521 51

  • Multi-scale surface flux and meteorological elements observation dataset in the Hai River Basin (Huailai station-eddy covariance system-40m tower, 2019)

    Multi-scale surface flux and meteorological elements observation dataset in the Hai River Basin (Huailai station-eddy covariance system-40m tower, 2019)

    This dataset contains the flux measurements from the Huailai station eddy covariance system (EC) from January 1 to October 24 in 2019. The site (115.7923° E, 40.3574°N) was located in the maize surface, near Donghuayuan town of Huailai city in Hebei Province. The elevation is 480 m. The EC was installed at a height of 3.5 m, and the sampling rate was 10 Hz. The sonic anemometer faced north, and the separation distance between the sonic anemometer and the CO2/H2O gas analyzer (CSAT3&EC150) was 0 m. The raw data acquired at 10 Hz were processed using the Eddypro post-processing software, including the spike detection, lag correction of H2O/CO2 relative to the vertical wind component, sonic virtual temperature correction, coordinate rotation (2-D rotation), corrections for density fluctuation (Webb-Pearman-Leuning correction), and frequency response correction. The EC data were subsequently averaged over 30 min periods. The observation data quality was divided into three classes according to the quality assessment method of stationarity (Δst) and the integral turbulent characteristics test (ITC): class 1 (level 0: Δst<30 and ITC<30), class 2 (level 1: Δst<100 and ITC<100), and class 3 (level 2: Δst>100 and ITC>100), which represent high-, medium-, and low-quality data, respectively. In addition to the above processing steps, the half-hourly flux data were screened in a four-step procedure: (1) data from periods of sensor malfunction were rejected; (2) data collected before or after 1 h of precipitation were rejected; (3) incomplete 30 min data were rejected when the missing data constituted more than 10% of the 30 min raw record; and (4) data were rejected at night when the friction velocity (u*) was less than 0.1 m/s. There were 48 records per day, and the missing data were replaced with -6999. Suspicious data were marked in red. There were lots of negative values of H2O density in winter where filling by -6999. The released data contained the following variables: data/time, wind direction (Wdir, °), wind speed (Wnd, m/s), the standard deviation of the lateral wind (Std_Uy, m/s), virtual temperature (Tv, ℃), H2O mass density (H2O, g/m3), CO2 mass density (CO2, mg/m3), friction velocity (ustar, m/s), stability (z/L), sensible heat flux (Hs, W/m2), latent heat flux (LE, W/m2), carbon dioxide flux (Fc, mg/ (m2s)), quality assessment of the sensible heat flux (QA_Hs), quality assessment of the latent heat flux (QA_LE), and quality assessment of the carbon flux (QA_Fc). In this dataset, the time of 0:30 corresponds to the average data for the period between 0:00 and 0:30; the data were stored in *.xls format. Detailed information can be found in the suggested references. For more information, please refer to Guo et al. (2020) (for sites information), Liu et al. (2013) for data processing) in the Citation section.

    2021-01-08 1372 35

  • Multi-scale surface flux and meteorological elements observation dataset in the Hai River Basin: Huailai station-lysimeters (2018)

    Multi-scale surface flux and meteorological elements observation dataset in the Hai River Basin: Huailai station-lysimeters (2018)

    This dataset includes the observation data from 01 Jan. 2019 through 31 Dec. 2018, collected by lysimeters, which are located at 115.788 E, 40.349 N and 480 m above sea level, near the Huailai Station in East Garden Town, Huailai County, Hebei Province. The land cover around the station was maize crop. The weighable lysimeter was built by UMS GmbH (Germany), with a surface area of 1m2, and a soil column of 1.5 m high. The original data sampling frequency was 1 Hz, and then averaged to 10min for distribution. The precision of the weighing data is 10g (equivalent to 0.01mm). During the crop growth period, a lysimeter is covered by bare soil and another one is covered by planted maize. The soil moisture, temperature and soil water potential sensors are installed both inside and outside of the lysimeter to ensure that the water cycle in the soil column is consistent with that of the field. Different sensors are located at different depths: 5, 50, 100 cm for soil temperature sensors, and 5, 10, 30, 50, 100 cm for soil moisture sensors, and 30 and 140cm for soil water potential sensors (the tensionmeter here can also measure soil temperature at 30, 140 cm). The soil heat flux plates in both lysimeters are buried at 10cm depth. The data processes and quality control according to: 1) ensuring there were 144 data every day, the lost data were replaced by -6999; 2) deleting the abnormal data; 3) deleting the outlier data; 4) keeping the consistent date and time format (e.g.2018-6-10 10:30). The distributed data include the following variables: Date-Time, Weight (I.L_1_WAG_L_000(Kg), I.L_2_WAG_L_000(Kg)), Drainage Weight (I.L_1_WAG_D_000(Kg), I.L_2_WAG_D_000(Kg)), Soil Heat Flux (Gs_1_10cm, Gs_2_10cm) (W/m2), Soil Moisture (Ms_1_5cm, Ms_1_10cm, Ms_1_30cm, Ms_1_50cm, Ms_1_100cm, Ms_2_5cm, Ms_2_10cm, Ms_2_30cm, Ms_2_50cm, Ms_2_100cm) (%), Soil Temperature (Ts_1_5cm , Ts_1_30cm, Ts_1_50cm, Ts_1_100cm, Ts_1_140cm, Ts_2_5cm , Ts_2_30cm, Ts_2_50cm, Ts_2_100cm, Ts_2_140cm) (C), Soil Water Potential (TS_1_30(hPa), TS_1_140(hPa), TS_2_30(hPa), TS_2_140(hPa)). The format of datasets was *.xls.

    2021-01-07 1638 23

  • Multi-scale surface flux and meteorological elements observation dataset in the Hai River Basin: Huailai station-lysimeters (2019)

    Multi-scale surface flux and meteorological elements observation dataset in the Hai River Basin: Huailai station-lysimeters (2019)

    This dataset includes the observation data from 01 Jan. 2019 through 31 Dec. 2019, collected by lysimeters, which are located at 115.788E, 40.349N and 480 m above sea level, near the Huailai Station in East Garden Town, Huailai County, Hebei Province. The land cover around the station was maize crop. The weighable lysimeter was built by UMS GmbH (Germany), with a surface area of 1m2, and a soil column of 1.5 m high. The original data sampling frequency was 1 Hz, and then averaged to 10min for distribution. The precision of the weighing data is 10g (equivalent to 0.01mm). During the crop growth period, a lysimeter is covered by bare soil and another one is covered by planted maize. The soil moisture, temperature and soil water potential sensors are installed both inside and outside of the lysimeter to ensure that the water cycle in the soil column is consistent with that of the field. Different sensors are located at different depths: 5, 50, 100 cm for soil temperature sensors, and 5, 10, 30, 50, 100 cm for soil moisture sensors, and 30 and 140cm for soil water potential sensors (the tensionmeter here can also measure soil temperature at 30, 140 cm). The soil heat flux plates in both lysimeters are buried at 10cm depth. The data processes and quality control according to: 1) ensuring there were 144 data every day, the lost data were replaced by -6999; 2) deleting the abnormal data; 3) deleting the outlier data; 4) keeping the consistent date and time format (e.g. 2019-01-01 10:30). The distributed data include the following variables: Date-Time, Weight (I.L_1_WAG_L_000(Kg), I.L_2_WAG_L_000(Kg)), Drainage Weight (I.L_1_WAG_D_000(Kg), I.L_2_WAG_D_000(Kg)), Soil Heat Flux (Gs_1_10cm, Gs_2_10cm) (W/m2), Soil Moisture (Ms_1_5cm, Ms_1_10cm, Ms_1_30cm, Ms_1_50cm, Ms_1_100cm, Ms_2_5cm, Ms_2_10cm, Ms_2_30cm, Ms_2_50cm, Ms_2_100cm) (%), Soil Temperature (Ts_1_5cm , Ts_1_30cm, Ts_1_50cm, Ts_1_100cm, Ts_1_140cm, Ts_2_5cm , Ts_2_30cm, Ts_2_50cm, Ts_2_100cm, Ts_2_140cm) (C), Soil Water Potential (TS_1_30(hPa), TS_1_140(hPa), TS_2_30(hPa), TS_2_140(hPa)). The format of datasets was *.xls.

    2021-01-07 1447 24

  • Multi-scale surface flux and meteorological elements observation dataset in the Hai River Basin (Huailai station-eddy covariance system-40m tower, 2018)
  • Multi-scale surface flux and meteorological elements observation dataset in the Hai River Basin (Huailai station-automatic weather station-10m tower, 2015)

    Multi-scale surface flux and meteorological elements observation dataset in the Hai River Basin (Huailai station-automatic weather station-10m tower, 2015)

    The data set contains the observation data of the 10m tower automatic meteorological station on December 31, 2015 on January 1, 2015 at solstice.The station is located in east garden town, huailai county, hebei province.The latitude and longitude of the observation point is 115.7880E, 40.3491N, and the altitude is 480m. The automatic weather station is installed on a 10m tower, the acquisition frequency is 30s, and the output time is 10min.The observation factors include air temperature and relative humidity (5m), and the direction is due north.The wind speed (10m), the wind direction (10m), the direction is due to the north;Air pressure (installed in waterproof box);Rainfall (10m);The four-component radiation (5m), the direction is due to the south;The infrared surface temperature (5m), the arm is facing south, and the probe is facing vertically downward.The soil temperature and humidity probe was buried at 1.5m to the south of the meteorological tower. The buried depth of the soil temperature probe was 0cm, 2cm, 4cm, 10cm, 20cm, 40cm, 80cm, 120cm and 160cm. The buried depth of the soil moisture sensor was 2cm, 4cm, 10cm, 10cm, 10cm, 10cm, 20cm, 80cm, 120cm and 160cm.The average soil temperature was buried 2,4 cm underground.Soil hot flow plates (3) are buried in the ground 6cm. Processing and quality control of observation data :(1) ensure 144 data per day (every 10min). If data is missing, it will be marked by -6999;(2) eliminate the moments with duplicate records;(3) data that is obviously beyond the physical meaning or the range of the instrument is deleted;(4) the format of date and time is unified, and the date and time are in the same column.For example, the time is: 10:30 on June 10, 2015.Data missing due to damage of charging controller from May 30 to June 5 and October 1 to October 9.Soil heat flux G1 due to the heat flux plate problem, the data of April 19 solstice on May 20 was missing. Data released by the automatic weather station include:Date/Time, air temperature and humidity observation (Ta_5m, RH_5m) (℃, %), wind speed (Ws_10m) (m/s), wind direction (WD) (°), pressure (hpa), precipitation (Rain) (mm), four-component radiation (DR, UR, DLR, ULR, Rn) (W/m2), surface radiation temperature (IRT_1, IRT_2) (℃),Soil heat flux (Gs_1, Gs_2, Gs_3) (W/m2), multi-layer soil moisture (Ms_2cm, Ms_4cm, Ms_10cm, Ms_20cm, Ms_40cm, Ms_80cm, Ms_120cm, Ms_160cm) (%), multi-layer soil temperature (Ts_2cm, Ts_4cm, Ts_10cm, Ts_20cm, Ts_40cm, Ts_80cm, Ts_120cm, Ts_160cm) (℃), average soil temperature TCAV (℃). Please refer to Guo et al. (2020) for information of observation test or site, and Liu et al. (2013) for data processing.

    2020-10-28 5166 75

  • Multi-scale surface flux and meteorological elements observation dataset in the Hai River Basin (Huailai station-eddy covariance system-10m tower, 2014)

    Multi-scale surface flux and meteorological elements observation dataset in the Hai River Basin (Huailai station-eddy covariance system-10m tower, 2014)

    The dataset contains the observation data of 10m tower vortex correlator on January 1, 2014, solstice, December 31, 2014.Station is located in huailai county, hebei province, east garden town, under the surface of irrigated corn.The latitude and longitude of the observation point is 115.7880E, 40.3491N, and the altitude is 480m.The acquisition frequency of eddy correlation instrument is 10Hz, the frame height is 5m, the ultrasonic direction is due to the north, and the distance between the ultrasonic anemometer (Gill&CSAT3 (replaced on October 9, 2014) and the CO2/H2O analyzer (Li7500A) is 18cm (15cm after October 9). The released data is the 30-minute data obtained from the post-processing of the original collected 10Hz data with Eddypro software. The main steps of the processing include: outfield value elimination, delay time correction, coordinate rotation (secondary coordinate rotation), Angle correction, frequency response correction, ultrasonic virtual temperature correction and density (WPL) correction.Quality assessment for each intercompared to at the same time, mainly is the atmospheric stability (Δ st) and turbulent characteristics of similarity (ITC) test.The 30min pass value output after processing was also screened :(1) the data when the instrument was wrong was removed;(2) data of 1h before and after precipitation were excluded;(3) the missing rate of 10Hz original data is more than 10% every 30min;(4) the observed data of weak turbulence at night were excluded (u* less than 0.1m/s).The average period of observation data was 30 minutes, 48 data a day, and the missing data was marked as -6999.Data missing due to power converter damage. The observation data released by vortex correlator include:Date/Time for the Date/Time, wind Wdir (°), Wnd horizontal wind speed (m/s), standard deviation Std_Uy lateral wind speed (m/s), ultrasonic virtual temperature Tv (K), the water vapor density H2O (g/m3), carbon dioxide concentration CO2 (mg/m3), friction velocity Ustar) (m/s), the length of cloth hoff, sensible heat flux Hs (W/m2), latent heat flux LE (W/m2), carbon dioxide flux Fc (mg/(m2s)), the quality of the sensible heat flux identifier QA_Hs, the quality of the latent heat flux identifier QA_LE.The quality of the sensible heat and latent heat, carbon dioxide flux identification is divided into three (quality id 0: (Δ st < 30, the ITC < 30);1: (Δ st < 100, ITC < 100);The rest are 2).The meaning of data time, such as 0:30 represents the average between 0:00 and 0:30;The data is stored in *.xls format. Please refer to Guo et al, 2020 for information of observation test or site, and Liu et al. (2013) for data processing.

    2020-10-28 5403 64

  • Multi-scale surface flux and meteorological elements observation dataset in the Haihe River Basin (Huailai station-eddy covariance system-10m tower, 2015)

    Multi-scale surface flux and meteorological elements observation dataset in the Haihe River Basin (Huailai station-eddy covariance system-10m tower, 2015)

    The data set contains the observation data of the vorticity correlator of 10m tower on December 31, 2015 from January 1, 2015 to solstice.Station is located in huailai county, hebei province, east garden town, under the surface of irrigated corn.The latitude and longitude of the observation point is 115.7880E, 40.3491N, and the altitude is 480m.The acquisition frequency of vortex correlativity instrument is 10Hz, the frame height is 5m, the ultrasonic direction is due to the north, and the distance between the ultrasonic anometer (CSAT3) and the CO2/H2O analyzer (Li7500A) is 15cm. The released data is the 30-minute data obtained from the post-processing of the original collected 10Hz data with Eddypro software. The main steps of the processing include: outfield value elimination, delay time correction, coordinate rotation (secondary coordinate rotation), frequency response correction, ultrasonic virtual temperature correction and density (WPL) correction.Quality assessment for each intercompared to at the same time, mainly is the atmospheric stability (Δ st) and turbulent characteristics of similarity (ITC) test.The 30min pass value output after processing was also screened :(1) the data when the instrument was wrong was removed;(2) data of 1h before and after precipitation were excluded;(3) the missing rate of 10Hz original data is more than 10% every 30min;(4) the observed data of weak turbulence at night were excluded (u* less than 0.1m/s).The average period of observation data was 30 minutes, 48 data a day, and the missing data was marked as -6999.May 14 solstice May 20 and May 24 solstice June 6 due to power converter damage, data missing. The observation data released by vortex correlator include:Date/Time for the Date/Time, wind Wdir (°), Wnd horizontal wind speed (m/s), standard deviation Std_Uy lateral wind speed (m/s), ultrasonic virtual temperature Tv (K), the water vapor density H2O (g/m3), carbon dioxide concentration CO2 (mg/m3), friction velocity Ustar) (m/s), the length of cloth hoff, sensible heat flux Hs (W/m2), latent heat flux LE (W/m2), carbon dioxide flux Fc (mg/(m2s)), the quality of the sensible heat flux identifier QA_Hs, the quality of the latent heat flux identifier QA_LE.The quality of the sensible heat and latent heat, carbon dioxide flux identification is divided into three (quality id 0: (Δ st < 30, the ITC < 30);1: (Δ st < 100, ITC < 100);The rest are 2).The meaning of data time, such as 0:30 represents the average between 0:00 and 0:30;The data is stored in *.xls format. Please refer to Guo et al, 2020 for information of observation test or site, and Liu et al. (2013) for data processing.

    2020-10-28 5367 58

  • Multi-scale surface flux and meteorological elements observation dataset in the Hai River Basin (Huailai station-large aperture scintillometer, 2015)

    Multi-scale surface flux and meteorological elements observation dataset in the Hai River Basin (Huailai station-large aperture scintillometer, 2015)

    The data set contains the observation data of large aperture scintillator from January 1, 2015 to December 31, 2015. Two large aperture scintillation meters, bls450 and zzlas, are installed respectively. The site is located in donghuayuan Town, Huailai County, Hebei Province. The longitude and latitude of the observation point are 115.7880e, 40.3491n and 480m above sea level. The effective height of the large aperture scintillator is 14m, the optical path length is 1870m, the longitude and latitude of the transmitter are 115.8023e, 40.3596n, and the longitude and latitude of the receiver are 115.7825e and 40.3522n. The acquisition frequency of bls450 and zzlas is 5Hz and 1Hz respectively, with an average output of 1min. The original data of large aperture scintillator is 1 min, and the released data is 30 min average data after processing and quality control. The sensible heat flux is mainly obtained by iterative calculation based on Monin obkhov similarity theory and combined with automatic weather station data. In the process of iterative calculation, for bls450, the stability function of thiermann and Grassl, 1992 is selected; for zzlas, the stability function of Andreas, 1988 is selected. The main quality control steps include: (1) eliminating the data of cn2 saturation; (2) eliminating the data with weak demodulation signal intensity; (3) eliminating the data of precipitation time and one hour before and after; (4) eliminating the data of weak turbulence under stable conditions (U * less than 0.1m/s). Several explanations about the published data are as follows: (1) the Las data is mainly bls450, and the missing time is supplemented by zzlas observation, and the missing time is marked with - 6999. (2) Data header: date / time: date / time, cn2: structure parameter of air refraction index (m-2 / 3), H_ Las: sensible heat flux (w / m2). The meaning of data time, for example, 0:30 represents the average of 0:00-0:30; the data is stored in *. XLS format. Guo et al, 2020 is used for site introduction and Liu et al, 2013 for data processing

    2020-10-27 4214 20

  • Multi-scale surface flux and meteorological elements observation dataset in the Haihe River Basin (Huailai station-automatic weather station-10m tower, 2014)

    Multi-scale surface flux and meteorological elements observation dataset in the Haihe River Basin (Huailai station-automatic weather station-10m tower, 2014)

    The dataset contains the observation data of the 10m tower automatic weather station on January 13, 2014 at solstice on December 31, 2014.The station is located in east garden town, huailai county, hebei province.The latitude and longitude of the observation point is 115.7880E, 40.3491N, and the altitude is 480m. The automatic weather station is installed on a 10m tower, the acquisition frequency is 30s, and the output time is 10min.The observation factors include air temperature and relative humidity (5m), and the direction is due north.The wind speed (10m), the wind direction (10m), the direction is due to the north;Air pressure (installed in waterproof box);Rainfall (10m);The four-component radiation (5m), the direction is due to the south;The infrared surface temperature (5m), the arm is facing south, and the probe is facing vertically downward.The soil temperature and humidity probe was buried 1.5m south of the meteorological tower. The soil temperature probe was buried at a depth of 2cm, 4cm, 10cm, 20cm, 40cm, 80cm, 120cm and 160cm. The soil moisture sensor was buried at a depth of 2cm, 4cm, 10cm, 20cm, 80cm, 120cm and 160cm.The average soil temperature was buried 2,4 cm underground.Soil hot flow plates (3) are buried in the ground 6cm.Processing and quality control of observation data :(1) ensure 144 data per day (every 10min). If data is missing, it will be marked by -6999;(2) eliminate the moments with duplicate records;(3) data that is obviously beyond the physical meaning or the range of the instrument is deleted;(4) the format of date and time is unified, and the date and time are in the same column.For example, the time is: 2014-6-10-10:30.January 13 - March 26 due to probe problems, soil moisture data at a depth of 20cm was wrong;From January 21 to March 26, due to probe problems, soil moisture data at a depth of 120cm was wrong;From March 17 to March 26 due to probe problems, soil moisture data at depth of 2,4,10,20 cm were wrong.The soil heat flux G2 had a problem on June 16, BBB 0, July 9 due to the hot plate problem. Guo et al, 2020 is used for site introduction and Liu et al, 2013 for data processing

    2020-10-27 6755 55

  • Multi-scale surface flux and meteorological elements observation dataset in the Hai River Basin (Huailai station-lysimeters, 2013)

    Multi-scale surface flux and meteorological elements observation dataset in the Hai River Basin (Huailai station-lysimeters, 2013)

    The data set contains the observation data of the evapotranspiration apparatus on January 1, 2013 (solstice) and December 31, 2013.The site is located in huailai county, hebei province, east garden town, the underlying surface for corn.The latitude and longitude of the observation point is 115.7880E, 40.3491N, and the altitude is 480m. The collection frequency of evapotranspiration permeameter is 1 time/minute, and the released data is the average of 10 minutes.The evapotranspiration meter is a cylindrical structure with a surface area of 1m2 and a buried depth of 1.5m. The observation accuracy of evapotranspiration is 0.01mm.Two evapotranspiration seeptometers were installed, one kept bare soil (lysimeter_1), the other for the corn underlay (lysimeter_2) during the growing season (May 10 - September 15).Soil temperature and humidity probe, soil water potential probe and soil heat flow plate are also installed in the evapotranspiration apparatus.The buried depth of the soil temperature sensor is 5cm, 30cm, 50cm, 100cm and 140cm.The buried depth of the soil water sensor is 2cm, 10cm, 20cm and 40cm.The soil heat flux plate is buried 10cm underground;The buried depth of the soil water potential sensor was 30cm and 140cm.Processing and quality control of observation data :(1) ensure 144 data per day (every 10min). If data is missing, it will be marked by -6999;(2) delete the data of observation anomalies caused during maintenance;(3) data that is obviously beyond the physical meaning or the range of the instrument is deleted;(4) the format of date and time is unified, and the date and time are in the same column.For example, the time is: 2013-6-10-10:30. The observation data released by the evapotranspiration permeameter include:Date/Time, weighing mass (i.l._1_wag_l_000 (Kg), i.l._2_wag_l_000 (Kg)), seepage mass (i.l._1_wag_d_000 (Kg), i.l._2_wag_d_000 (Kg)), soil heat flux (Gs_1_10cm, Gs_2_10cm) (W/m2),Multi-layer soil moisture (Ms_1_2cm, Ms_1_10cm, Ms_1_20cm, Ms_1_40cm, Ms_2_2cm, Ms_2_10cm, Ms_2_20cm, Ms_2_40cm) (%),Multi-layer soil temperature (Ts_1_5cm, Ts_1_30cm, Ts_1_50cm, Ts_1_100cm, Ts_1_140cm, Ts_2_140cm, ts_2_2_5cm, ts_2_2_50cm, Ts_2_100cm, Ts_2_140cm) (℃), soil water potential (TS_1_30 (hPa), TS_1_140 (hPa), TS_2_30 (hPa), TS_2_30 (hPa), TS_2_140 (hPa), TS_2_140 (hPa));The data is stored in *.xls format. Guo et al, 2020 is used for site introduction and Liu et al, 2013 for data processing

    2020-10-27 10398 17