Pan-third-polar environmental change and green silk road construction

Brief Introduction: Pan-third-polar environmental change and green silk road construction

Number of Datasets: 1101

  • Temporal and spatial matching pattern data and maps of water and soil resources on Tibetan Plateau (resolution 1km) (2008-2015)

    Temporal and spatial matching pattern data and maps of water and soil resources on Tibetan Plateau (resolution 1km) (2008-2015)

    The Tibetan Plateau in China covers six provinces including Tibet, Qinghai, Xinjiang, Yunnan, Gansu and Sichuan, including Tibet and Qinghai, as well as parts of Xinjiang, Yunnan, Gansu and Sichuan. The research on water and soil resources matching aims to reveal the equilibrium and abundance of water resources and land resources in a certain regional scale. The higher the level of consistency between regional water resources and the allocation of cultivated land resources, the higher the matching degree, and the superior the basic conditions of agricultural production. The general agricultural water resource measurement method based on the unit area of cultivated land is used to reflect the quantitative relationship between the water supply of agricultural production in the study area and the spatial suitability of cultivated land resources. The Excel file of the data set contains the generalized agricultural soil and water resource matching coefficient data of the Tibetan Plateau municipal administrative region in China from 2008 to 2015, the vector data is the boundary data of the Tibetan Plateau municipal administrative region in China in 2004, and the raster data pixel value is the generalized agricultural soil and water resource matching coefficient of the year in the region.

    2021-04-09 1931 40

  • The ASTER_GDEM dataset of the Tibetan Plateau (2011)

    The ASTER_GDEM dataset of the Tibetan Plateau (2011)

    The ASTER Global Digital Elevation Model (ASTER GDEM) is a global digital elevation data product jointly released by the National Aeronautics and Space Administration of America (NASA) and the Ministry of Economy, Trade and Industry of Japan (METI). The DEM data were based on the observation results of NASA’s new generation of Earth observation satellite, TERRA, and generated from 1.3 million stereo image pairs collected by ASTER (Advanced Space borne Thermal Emission and Reflection Radio meter) sensors, covering more than 99% of the land surface of the Earth. These data were downloaded from the ASTER GDEM data distribution website. For the convenience of using the data, based on framing the ASTER GDEM data, we used Erdas software to splice and prepare the ASTER GDEM mosaic of the Tibetan Plateau. This data set contains three data files: ASTER_GDEM_TILES ASTERGDEM_MOSAIC_DEM ASTERGDEM_MOSAIC_NUM The ASTER GDEM data of the Tibetan Plateau have an accuracy of 30 meters, the raw data are in tif format, and the mosaic data are stored in the img format. The raw data of this data set were downloaded from the ASTERGDEM website and completely retained the original appearance of the data. ASTER GDEM was divided into several 1×1 degree data blocks during distribution. The distribution format was the zip compression format, and each compressed package included two files. The file naming format is as follows: ASTGTM_NxxEyyy_dem.tif ASTGTM_NxxEyyy_num.tif xx is the starting latitude, and yyy is the starting longitude. _dem.tif is the dem data file, and _num.tif is the data quality file. ASTER GDEM TILES: The original, unprocessed raw data are retained. ASTERGDEM_MOSAIC_DEM: Inlay the dem.tif data using Erdas software, and parameter settings use default values. ASRERGDEM_MOSAIC_NUM: Inlay the num.tif data using Erdas software, and parameter settings use default values. The original raw data are retained, and the accuracy is consistent with that of the ASTERGDEM data distribution website. The horizontal accuracy of the data is 30 meters, and the elevation accuracy is 20 meters. The mosaic data are made by Erdas, and the parameter settings use the default values.

    2021-04-09 3528 168

  • Land use of the Tibet Plateau in 2015 (Version 1.0)

    Land use of the Tibet Plateau in 2015 (Version 1.0)

    Based on 2015 ESA global land cover data (ESA GlobCover), combined with the Tsinghua university global land cover data (FROM GLC)、NASA MODIS global land cover data (MCD12Q1)、University of Maryland global land data (UMD)、USGS global land data (IGBP DISCover),we build the LUC classification system in the Tibet Plateau and the rest of the data transformation rules of the classification system. We also build the land cover classification confidence function and the rules of fusing land classification to finish the Integration and modification of land cover products and finally complet the land use data in the Tibet Plateau V1.0.

    2021-04-09 6754 430

  • Observational snow depth dataset of the Tibetan Plateau (Version 1.0) (1961-2013)

    Observational snow depth dataset of the Tibetan Plateau (Version 1.0) (1961-2013)

    The Tibetan Plateau has an average altitude of over 4000 m and is the region with the highest altitude and the largest snow cover in the middle and low latitudes of the Northern Hemisphere regions. Snow cover is the most important underlying surface of the seasonal changes on the Tibetan Plateau and an important composing element of ecological environment. Ice and snow melt water is an important water resource of the plateau and its downstream areas. At the same time, plateau snow, as an important land-surface forcing factor, is closely related to disastrous weather (such as droughts and floods) in East Asia, the South Asian monsoon and in the middle and lower reaches of the Yangtze River. It is an important indicator of short-term climate prediction and one of the most sensitive responses to global climate change. The snow depth refers to the vertical depth from the surface of the snow to the ground. It is an important parameter for snow characteristics and one of the conventional meteorological observation elements. It is the key parameter of snow water equivalent estimation, climate effect studies of snow cover, the basin water balance, the simulation and monitoring of snow-melt, and snow disaster evaluation and grading. In this data set, the Tibetan Plateau boundary was determined by adopting the natural topography as the leading factor and by comprehensive consideration of the principles of altitude, plateau and mountain integrity. The main part of the plateau is in the Tibetan Autonomous Region and Qinghai Province, with an area of 2.572 million square kilometers, accounting for 26.8% of the total land area of China. The snow depth observation data are the monthly maximum snow depth data after quality detection and quality control. There are 102 meteorological stations in the study area, most of which were built during the 1950s to 1970s. The data for some months or years for sites existing during this period were missing, and the complete observational records from 1961 to 2013 were adopted. The temporal resolution is daily, the spatial coverage is the Tibetan Plateau, and all the data were quality controlled. Accurate and detailed plateau snow depth data are of great significance for the diagnosis of climate change, the evolution of the Asian monsoon and the management of regional snow-melt water resources.

    2021-04-09 3243 158

  • The dataset of wetland pattern changes on the Tibet Plateau (1970s, 2000s)

    The dataset of wetland pattern changes on the Tibet Plateau (1970s, 2000s)

    Based on the Tibetan Plateau wetland pattern in the 1970s interpreted using the Mire Map of China compiled by the scientific expeditions and the Tibetan Plateau wetland pattern in the 2000s interpreted using Landsat TM (resolution: 30 m) satellite image data, The Mire Map of China in the 1970s was interpreted. Visual interpretation of Landsat TM images from 2006 to 2009: a) Based on the natural zoning of the whole district, the interpretation keys of different wetland types were established with reference to the data obtained by different physical geography units and actual surveys. b) Based on the established interpretation keys, wetlands with an area greater than 10 square kilometers were primarily extracted by artificial visual interpretation method (excluding permanent, seasonal rivers and riverbeds). c) According to the interpretation results in combination with the topographic map (resolution: 90 m) of the study area and the actual situation of the wetland plaque investigation within the study area, the plaque modification and supplementation were artificially carried out. The data of the 1970s were obtained by interpretation of the Mire Map of China compiled by the Tibetan Plateau scientific expeditions of the Changchun Institute of Geography. The wetland data of the 2000s was derived from Landsat TM (resolution: 30 m) satellite image data. The data are of good quality.

    2021-04-09 1984 55

  • Water resources data of the Qinghai Tibet Plateau (1990-2010)

    Water resources data of the Qinghai Tibet Plateau (1990-2010)

    This data set is the water resources data of the Qinghai Tibet Plateau from 1990 to 2010, which is the sum of renewable surface and groundwater resources. The data is in vector format and the spatial resolution is in the scale of prefecture level administrative units. The data is obtained by checking the results of VIC (variable injection capacity) hydrological model. The simulated water resources are the sum of the surface runoff and underground runoff in the output results of hydrological simulation. The simulation results are verified by comparing with the runoff data of the measured stations. According to the statistics of water resources at the provincial level in China water resources bulletin, a correction coefficient α is introduced at the provincial level, so that the product of water resources and α in the hydrological model simulation province is equal to the statistics of water resources. Then the amount of water resources in the administrative unit is the product of the total amount of water resources and α.

    2021-04-09 2370 73

  • Simulation data of active layer thickness and ground temperature of permafrost in Qinghai Tibet Plateau (2000-2015, 2061-2080)

    Simulation data of active layer thickness and ground temperature of permafrost in Qinghai Tibet Plateau (2000-2015, 2061-2080)

    A comprehensive understanding of the permafrost changes in the Qinghai Tibet Plateau, including the changes of annual mean ground temperature (Magt) and active layer thickness (ALT), is of great significance to the implementation of the permafrost change project caused by climate change. Based on the CMFD reanalysis data from 2000 to 2015, meteorological observation data of China Meteorological Administration, 1 km digital elevation model, geo spatial environment prediction factors, glacier and ice lake data, drilling data and so on, this paper uses statistics and machine learning (ML) method to simulate the current changes of permafrost flux and magnetic flux in Qinghai Tibet Plateau The range data of mean ground temperature (Magt) and active layer thickness (ALT) from 2000 to 2015 and 2061 to 2080 under rcp2.6, rcp4.5 and rcp8.5 concentration scenarios were obtained, with the resolution of 0.1 * 0.1 degree. The simulation results show that the combination of statistics and ML method needs less parameters and input variables to simulate the thermal state of frozen soil, which can effectively understand the response of frozen soil on the Qinghai Tibet Plateau to climate change.

    2021-04-09 1731 92

  • FVC dataset of remote sensing for ecological assets assessment in Qinghai-Tibet Plateau

    FVC dataset of remote sensing for ecological assets assessment in Qinghai-Tibet Plateau

    The basic data set of remote sensing for ecological assets assessment of the Qinghai-Tibet Plateau includes the annual Fraction Vegetation Coverage (FVC), Net Primary Productivity (NPP) and Leaf Area Index (LAI) of the Qinghai-Tibet Plateau since 2000, and other ecological parameters based on remote sensing inversion. The FVC data are mainly developed from MODIS NDVI data. Based on pixel dichotomy model, the vegetation coverage model is developed by using multi-scale remote sensing images, combining with high precision remote sensing parameters such as vegetation community type and distribution characteristics, and the mixed pixel decomposition method is used to construct the vegetation coverage model. All data could be used only after the permission of the data distributor.

    2021-04-09 1601 66

  • The map of fractional vegetation cover in the Yellow River source region of Tibet Plateau (2015)

    The map of fractional vegetation cover in the Yellow River source region of Tibet Plateau (2015)

    This dataset is a pixel-based maximum fractional vegetation cover map within the Yellow River source region on the Qinghai-Tibet Plateau, with an area of about 44,000 square kilometers. Based on the time series images acquired from MODIS with a resolution of 250 m and Landsat-8 with a resolution of 30 m in 2015 during the vegetation growing season, the data are derived using dimidiate pixel model and time interpolation. The spatial resolution of the image is 30 m, using the WGS 1984 UTM projected coordinate system, and the data is in the format of grid.

    2021-04-09 2562 8

  • Dataset of ZY-3 02 satellite images (2017)

    Dataset of ZY-3 02 satellite images (2017)

    The data set is remote sensing image of Resource 3 No. 02 (ZY3-02). ZY3-02 was successfully launched from Taiyuan Satellite Launch Center at 11:17 on May 30, 2016 by Long March 4 B carrier rocket. China-made satellite imagery will be further strengthened in the areas of land surveying and mapping, resource survey and monitoring, disaster prevention and mitigation, agriculture, forestry and water conservancy, ecological environment, urban planning and construction, transportation and other fields. List of files: ZY302_PMS_E98.8_N37.4_201707_L1A0000156704 ZY302_PMS_E100.4_N37.0_20171127_L1A0000217243 ZY302_TMS_E99.5_N37.0_20170717_L1A0000160059 ZY302_TMS_E100.3_N36.6_20171127_L1A0000217279 ZY302_TMS_E100.4_N37.0_20170529_L1A0000139947 Folder Naming Rules: Satellite Name Sensor Name Central Longitude Central Latitude Acquisition Time L1****

    2021-03-28 6001 80

  • Dataset of ZY-3 satellite images (2017)

    Dataset of ZY-3 satellite images (2017)

    The major deserts in China include the Taklamakan Desert, Gurban Tunggut Desert, Qaidam Desert, Kumtag Desert, Badain Jaran Desert, Tengger Desert, Ulan Buh Desert, Hobq Desert, MU US Desert, Hunshandake Desert, Hulunbuir Sands, and Horqin Sands. All the desert boundaries were derived from Google Earth Pro® via manual interpretation. We delineated the desert boundaries using the Digital Global Feature Imagery and SpotImage (2011, 10 m resolution) collections of Google Earth Pro®, whose spatial resolution is finer than 30 m. The acquisition time of most images was in 2011.

    2021-03-28 2534 36

  • Dataset of GF-2 satellite images (2017)

    Dataset of GF-2 satellite images (2017)

    Gf-2 satellite is the first civil optical remote sensing satellite independently developed by China with a spatial resolution better than 1 meter. It is equipped with two high-resolution 1-meter panchromatic and 4-meter multi-spectral cameras, and the spatial resolution of the sub-satellite can reach 0.8 meters. This data set is the remote sensing image data of 6 jing gaofen-2 satellite in 2017.The folder list is: GF2_PMS1_E100.5_N37.2_20171013_L1A0002678101 GF2_PMS1_E100.5_N37.4_20171013_L1A0002678097 GF2_PMS1_E100.6_N37.6_20171013_L1A0002678096 GF2_PMS2_E100.3_N37.4_20170810_L1A0002534662 File naming rules: satellite name _ sensor name _ center longitude _ center latitude _ imaging time _L****

    2021-03-28 7055 144

  • Dataset of GF-1 satellite images (2017-2018)

    Dataset of GF-1 satellite images (2017-2018)

    This data set is the remote sensing data of gaofan-1 satellite, including the data of two scenes of PMS1 camera on 2017-8-13 and 2017-10-5, one scene of PMS2 camera on 2017-5-27, and one scene of WFV2 and WFV3 camera on September 23, 2018.File list: GF1_PMS1_E99.1_N37.2_20170813_L1A0002539236 GF1_PMS1_E101.2_N36.4_20171005_L1A0002653985 GF1_PMS2_E100.3_N37.7_20170527_L1A0002384098 GF1_WFV2_E98.4_N37.6_20180927_L1A0003481737 GF1_WFV3_E100.4_N37.3_20180927_L1A0003481706

    2021-03-28 4042 86

  • Spot vegetation NDVI dataset for Sanjiangyuan (1998-2013)

    Spot vegetation NDVI dataset for Sanjiangyuan (1998-2013)

    The data set is extracted from the NDVI data of long time series acquired by VEGETATION sensor on SPOT satellite. The time range of the data set is from May 1998 to 2013. In order to remove the noise in NDVI data, the maximum synthesis is carried out. A NDVI image is synthesized every 10 days. The data set is cut out from the global data set, so as to carry out the research and analysis of the source areas of the three rivers separately. The data format of this data set is geotiff, spatial resolution is 1 km, temporal resolution is 10 days, time range: May 1998 to December 2013.

    2021-03-28 3592 40

  • GIMMS NDVI3g dataset for Sanjiangyuan (1982-2015)

    GIMMS NDVI3g dataset for Sanjiangyuan (1982-2015)

    The data set is NDVI data of long time series acquired by NOAA's Advanced Very High Resolution Radiometer (AVHRR) sensor. The time range of the data set is from 1982 to 2015. In order to remove the noise in NDVI data, maximum synthesis and multi-sensor contrast correction are carried out. A NDVI image is synthesized every half month. The data set is widely used in the analysis of long-term vegetation change trend. The data set is cut out from the global data set, so as to carry out the research and analysis of the source areas of the three rivers separately. The data format of this data set is GeoTIFF with spatial resolution of 8 km and temporal resolution of 2 weeks, ranging from 1982 to 2015. Data transfer coefficient is 10000, NDVI = ND/10000.

    2021-03-28 4754 93

  • MODIS vegetation index dataset in Sanjiangyuan (2000-2018)

    MODIS vegetation index dataset in Sanjiangyuan (2000-2018)

    The data set is MODIS vegetation index data (MOD13Q1). The source areas of the three rivers are extracted to carry out the research and analysis of the source areas of the three rivers separately. MOD13Q1 is a 16-day composite vegetation index, including normalized vegetation index (NDVI) and enhanced vegetation index (EVI). The spatial scope of Sanjiang Source covers two MODIS files (h25v05 and h26v05). Data storage format is hdf. Each file contains 12 bands: Normalized Vegetation Index (NDVI), Enhanced Vegetation Index (EVI), Data Quality (VI Quality), Red Reflectance, Near Infrared Reflectance (NIR Reflectance), Blue Reflectance, Mid Infrared Reflectance, Observation. Viewzenith angle, sun zenith angle, relative azimuth angle, composite day of the year and pixel reliability. The data format of this data set is hdf, spatial resolution is 250m, temporal resolution is 16 days, time range: February 2000 to October 2018.

    2021-03-28 4692 93

  • GF-1 NDVI dataset in Maduo County (2016)

    GF-1 NDVI dataset in Maduo County (2016)

    This is the vegetation index (NDVI) for Maduo County in July, August and September of 2016. It is obtained through calculation based on the multispectral data of GF-1. The spatial resolution is 16 m. The GF-1 data are processed by mosaicking, projection coordinating, data subsetting and other methods. The maximum synthesis is then conducted every month in July, August, and September.

    2021-03-28 3191 33

  • Per capita net income of rural residents in different regions (counties) of Qinghai Province (2000-2015)

    Per capita net income of rural residents in different regions (counties) of Qinghai Province (2000-2015)

    This data records the statistical data of per capita net income of rural residents in Qinghai Province from 2000 to 2015, which is divided by region and year. The data are collected from the statistical yearbook of Qinghai Province issued by the Bureau of statistics of Qinghai Province. The data set contains 11 data tables with the same structure. For example, there are seven fields in the data table from 2005 to 2013 Field 1: Region Field 2: Region Field 3: 2005 Field 4: 2010 Field 5: 2011 Field 6: 2012 Field 7: 2013

    2021-03-23 165 5

  • Per capita living consumption expenditure of rural residents in different regions of Qinghai Province (2010-2018)

    Per capita living consumption expenditure of rural residents in different regions of Qinghai Province (2010-2018)

    This data set records the statistical data of per capita living consumption expenditure of rural residents in different regions of Qinghai Province from 2010 to 2018, which is divided by region and year. The data are collected from the statistical yearbook of Qinghai Province issued by the Bureau of statistics of Qinghai Province. The data set contains 12 data tables with different structures. For example, the data table from 2010 to 2018 has 10 fields: Field 1: Region Field 2: 2010 Field 3: 2011 Field 4: 2012 Field 5: 2013 Field 6: 2014 Field 7: 2015 Field 8: 2016 Field 9: 2017 Field 10: 2018

    2021-03-23 223 4

  • Health institutions, personnel and beds in different regions of Qinghai Province (1998-2011)

    Health institutions, personnel and beds in different regions of Qinghai Province (1998-2011)

    This data set records the statistical data of health institutions, personnel and beds in different regions of Qinghai Province from 1998 to 2011. The data are divided by category, Xining City, Haidong region, Haibei Prefecture, Huangnan Prefecture, Hainan prefecture, Guoluo Prefecture, Yushu prefecture and Haixi Prefecture. The data are collected from the statistical yearbook of Qinghai Province issued by the Bureau of statistics of Qinghai Province. The data set contains 47 data tables with different structures. For example, the data table in 2006 has nine fields: Field 1: Category Field 2: Xining City Field 3: Haidong region Field 4: Haibei Prefecture Field 5: Huang Nanzhou Field 6: Hainan Field 7: Golog Field 8: Yushu prefecture Field 9: Haixi Prefecture

    2021-03-23 207 7