Brief Introduction: 泛第三极是从第三极向西、向北扩展,涵盖青藏高原、帕米尔、兴都库什、伊朗高原、高加索、喀尔巴阡等山脉的欧亚高地及其环境影响区,面积2000多万平方公里,和30多亿人的生存环境有关。泛第三极地区与“一带一路”核心区高度重合。深入研究泛第三极地区环境变化规律、机制与未来变化趋势,解决重点地区、重点国家和重点工程的资源环境问题,将为环境变化和人类活动最强烈的丝绸之路经济带可持续发展提供科学依据,为打造绿色、健康、智力、和平的“一带一路”提供决策支持。 中国科学院A类战略性先导科技专项“泛第三极环境变化与绿色丝绸之路建设”(以下简称“丝路环境专项”)于9月30日在北京。本专项将遵循习近平总书记对第二次青藏高原综合科学考察研究的重要指示精神和新时代青藏高原生态文明建设理念的系列重要讲话指示精神,与第二次青藏高原综合科学考察研究和三极环境与气候变化国际大科学计划有机结合,聚焦水、生态、人类活动,着力解决环境变化机理、资源环境承载力、灾害风险、绿色发展途径等方面的问题。围绕专项的两大统领科学问题,在科学贡献层面,预期在泛第三极环境变化与西风-季风相互作用和水资源变化及广域联动、泛第三极环境变化对关键物种和典型生态系统影响的预警体系与适应模式、人类文明发展与泛第三极环境相互作用及其适应策略等方面产出重大成果,推动从高极到三极的全球环境研究新前沿和三极环境与气候变化国际大科学计划的实施;在国家需求层面,预期在绿色丝绸之路建设的路线图、绿色丝绸之路建设的技术示范、优化青藏高原生态安全屏障体系的科学方案等方面产出重大成果,推动青藏高原可持续发展、推进国家生态文明建设、促进全球生态环境保护。

Number of Datasets: 534

  • Seismic velocity reduction and accelerated recovery due to earthquakes on the Longmenshan fault (2000-2014)

    This data set is collected from the supplementary information part of the paper: Pei, S.P., Niu, F.L., Ben-Zion, Y., Sun, Q., Liu, Y.B., Xue, X.T., Su,J.R., & Shao, Z.G. (2019). Seismic velocity reduction and accelerated recovery due to earthquakes on the Longmenshan fault. Nature Geoscience. 12. 387-392. doi:10.1038/s41561-019-0347-1. This paper studies the structural evolution process of The Longmenshan fault zone located at a pronounced topographic boundary between the eastern margin of the Tibetan plateau and the western Sichuan basin. With the observations on coseismic velocity reductions and the healing phases, it is found that the healing phase of Wenchuan earthquake fracture zone accelerated significantly in response to the Lushan earthquake. This data set contains 3 tables, table names and content are as follows: Data list: The data name list of the rest tables; t1: Data of the four periods (befor Wenchuan earthquake, after Wenchuan earthquake, before Lushan earthquake, after Lushan earthquake); t2: The average velocities with error in Figure 2 in the paper for Wenchuan earthquake (WCEQ) and Lushan earthquake (LSEQ) area. See attachments for data details: Supplementary information.pdf, Seismic velocity reduction and accelerated recovery due to earthquakes on the Longmenshan fault.pdf.

    2019-10-09 0 1 View Details

  • A tree ring-based winter temperature reconstruction for the southeastern Tibetan Plateau (1340-2007)

    This data set is provided by the author of the paper: Huang, R., Zhu, H.F., Liang, E.Y., Liu, B., Shi, J.F., Zhang, R.B., Yuan, Y.J., & Grießinger, J. (2019). A tree ring-based winter temperature reconstruction for the southeastern Tibetan Plateau since 1340 CE. Climate Dynamics, 53(5-6), 3221-3233. In this paper, in order to understand the past few hundred years of winter temperature change history and its driving factors, the researcher of Key Laboratory of Alpine Ecology, Institute of Tibetan Plateau Research, Chinese Academy of Sciences and CAS Center for Excellence in Tibetan Plateau Earth Sciences. Prof. Eryuan Liang and his research team, reconstructed the minimum winter (November – February) temperature since 1340 A.D. on southeastern Tibetan Plateau based on the tree-ring samples taken from 2007-2016. The data set contains minimum winter temperature reconstruction data of Changdu on the southeastern TP during 1340-2007. See attachments for data details: A tree ring-based winter temperature reconstruction for the southeasternTibetan Plateau since 1340 CE.pdf

    2019-10-03 0 8 View Details

  • Spatial distribution map of ecological carrying capacity in One Belt And One Road area in 2015

    Ecological carrying capacity refers to the maximum population scale with a certain level of social and economic development that can be sustainably carried by the ecosystem without damaging the production capacity and functional integrity of the ecosystem, per person/square kilometer. Spatial distribution data of ecological carrying capacity were calculated based on NPP data simulated by VPM model and FAO production and trade data of agriculture, forestry and animal husbandry. Based on NPP data and combined with the land use data of cci-ci and biomass ratio parameters of various ecosystems, ANPP data was obtained to serve as ecological supply quantity. Based on agricultural, forestry and animal husbandry production and trade data and combined with population data, per capita ecological consumption standards of countries along the One Belt And One Road line were obtained, and then national scale data space was rasterized. The spatial rasterized ecological bearing data are obtained by dividing the ecological supply data with the per capita ecological consumption standard.

    2019-09-30 0 5 View Details

  • Long-term sequence dataset of China snow depth (1979-2018)

    This data set is an upgraded version of the “Long-term Sequence Data Set of China Snow Depth". The source data of the dataset differ from those of the previous version. Because AMSR-E stopped running in 2011, snow depth from 2008 to 2018 is extracted using the brightness temperature of the SSMI/S sensor. This dataset provides daily data of snow depth distribution in China from January 1, 1979, to December 31, 2018, with a spatial resolution of 0.25 degrees. The original data used to invert the snow depth dataset are the daily passive microwave brightness temperature data (EASE-Grid) from SMMR (1979-1987), SSM/I (1987-2007) and SSMI/S (2008-2018) processed by the National Snow and Ice Data Center (NSIDC). Because the three sensors are mounted on different platforms, there is a certain system inconsistency in the obtained data. The time consistency of the brightness temperature data is improved by cross-calibrating the brightness temperatures of different sensors. The snow depth inversion is then performed using the algorithm specifically modified for China by Dr. Tao Che based on the Chang algorithm. For the specific inversion method, please refer to the data specification, “Long-term Sequence Data Set of China Snow Depth (1979-2018) Introduction. doc". The data set is a latitude and longitude projection, with one file each day, the naming convention of which is year + day; for example, 1990001 represents the first day of 1990, and 1990207 represents the 207th day of 1990. For a detailed data description, please refer to the data file.

    2019-09-19 0 97 View Details

  • Plant functional types map in China (1 km)

    Vegetation functional type (PFT) is a combination of large plant species according to the ecosystem function and resource utilization mode of plant species. Each planting functional type shares similar plant attributes, which simplifies the diversity of plant species into the diversity of plant function and structure.The concept of vegetation-functional has been advocated by ecologists especially ecosystem modelers.The basic assumption is that globally important ecosystem dynamics can be expressed and simulated through limited vegetative functional types.At present, vegetation-functional model has been widely used in biogeographic model, biogeochemical model, land surface process model and global dynamic vegetation model. For example, the land surface process model of the national center for atmospheric research (NCAR) in the United States has changed the original land cover information into the applied vegetation-functional map (Bonan et al., 2002).Functional vegetation has been used in the dynamic global vegetation model (DGVM) to predict the changes of ecosystem structure and function under the global change scenario. 1. Functional classification system of vegetation 1 Needleleaf evergreen tree, temperate 2 Needleleaf evergreen tree, boreal 3 Needleleaf deciduous tree 4 Broadleaf evergreen tree, tropical 5 Broadleaf evergreen tree, temperate 6 Broadleaf deciduous tree, tropical 7 Broadleaf deciduous tree, temperate 8 Broadleaf deciduous tree, boreal 9 Broadleaf evergreen shrub, temperate 10 Broadleaf deciduous shrub, temperate 11 Broadleaf deciduous shrub, boreal 12 C3 grass, arctic 13 C3 grass 14 C4 grass 15 Crop 16 Permanent wetlands 17 Urban and built-up lands 18 Snow and ice 19 Barren or sparsely vegetated lands 20 Bodies of water 2. Drawing method China's 1km vegetation function map is based on the climate rules of land cover and vegetation function conversion proposed by Bonan et al. (Bonan et al., 2002).Ran et al., 2012).MICLCover land cover map is a blend of 1:100000 data of land use in China in 2000, the Chinese atlas (1:10 00000) the type of vegetation, China 1:100000 glacier map, China 1:10 00000 marshes and MODIS land cover 2001 products (MOD12Q1) released the latest land cover data, using IGBP land cover classification system.The evaluation shows that it may be the most accurate land cover map on the scale of 1km in China.Climate data is China's atmospheric driven data with spatial resolution of 0.1 and temporal resolution of 3 hours from 1981 to 2008 developed by he jie et al. (2010).The data incorporates Princeton land-surface model driven data (Sheffield et al., 2006), gewex-srb radiation data (Pinker et al., 2003), TRMM 3B42 and APHRODITE precipitation data, and observations from 740 meteorological stations and stations under the China meteorological administration.According to the evaluation results of RanYouhua et al. (2010), GLC2000 has a relatively high accuracy in the current global land cover data set, and there is no mixed forest in its classification system. Therefore, the mixed forest in the MICLCover land cover diagram USES GLC2000 (Bartholome and Belward, 2005).The information in xu wenting et al., 2005) was replaced.The data can be used in land surface process model and other related researches.

    2019-09-16 0 38 View Details

  • Dataset of Soil Erosion (water) Intensity with 300m resoluton in Tibetan Plateau (1992, 2005, 2015)

    1)The data content includes three stages of soil erosion intensity in Qinghai-Tibet Plateau in 1992, 2005 and 2015, and the grid resolution is 300m. 2) China soil erosion prediction model (CSLE) was used to calculate the soil erosion amount of more than 4,000 investigation units on the Qinghai-Tibet Plateau. Soil erosion was interpolated according to land use on Qinghai-Tibet Plateau. According to the soil erosion classification standard, the soil erosion intensity map of Qinghai-Tibet Plateau was obtained. 3) By comparing the differences of three-stage soil erosion intensity data, it conforms to the actual change law and the data quality is good. 4) The data of soil erosion intensity are of great significance to the study of soil erosion in the Qinghai-Tibet Plateau and the sustainable development of local ecosystems. In the attribute table, "Value" represents the erosion intensity level, from 1 to 6, the value represents slight, mild, moderate, intense, extremely intense and severe. "BL" represents the percentage of echa erosion intensity in the total area.

    2019-09-16 0 7 View Details

  • The lakes larger than 1k㎡ in Tibetan Plateau (V1.0) (1970s, 1990, 2000, 2010)

    The dataset includes vector map of the lakes larger than 1k㎡ on Tibetan Plateau in 1970s, 1990, 2000, 2010. The lake boundry data was extracted from remote sensing image like Landsat MSS, TM, ETM+, by means of visual interpretation. The data type is vector data, and it's attribute class includes Area (km²). The Projected Coordinate System is Albers Conical Equal Area. It is mainly used in the study of changes in lakes, hydrological and meteorological on the Tibetan Plateau.

    2019-09-15 0 19 View Details

  • Population, urbanization, GDP and industrial structure forecast scenario data of the Heihe River Basin (Version 1.0) (2010-2050)

    Taking 2000 as the base year, the future population scenario prediction adopted the Logistic model of population, and it not only can better describe the change pattern of population and biomass but also is widely applied in the economic field. The urbanization rate was predicted using the urbanization Logistic model. Based on the existing urbanization horizontal sequence value, the prediction model was established by acquiring the parameters in the parametric equation applying nonlinear regression. The urban population was calculated by multiplying the predicted population by the urbanization rate. The Logistic model was used to predict the future gross national product of each county (or city), and then, according to the economic development level of each county (or city) in each period (in terms of real GDP per capita), the corresponding industrial structure scenarios in each period were set, and the output value of each industry was predicted. The trend of industrial structure changing in China and the research area lagged behind the growth of GDP, so it was adjusted according to the need of the future industrial structure scenarios of the research area.

    2019-09-15 0 2 View Details

  • The population series data at county level on the Tibetan Plateau (1970-2006)

    The data set contains series data of populations of major cities and counties on the Tibetan Plateau from 1970 to 2006. It is used to study social and economic changes on the Tibetan Plateau. The table has six fields. Field 1: Year Interpretation: Year of the data Field 2: Province Interpretation: The province from which the data were obtained Field 3: City/Prefecture Interpretation: The city or prefecture from which the data were obtained Field 4: County Interpretation: The name of the county Field 5: Population (10,000) Interpretation: Population Field 6: Data Sources Interpretation: Source of Data Extraction The data comes from the statistical yearbook and county annals of Tibet Autonomous Region, Qinghai, Sichuan, Gansu, Yunnan and Xinjiang. Some are listed as follows: [1] Gansu Yearbook Editorial Committee. Gansu Yearbook [J]. Beijing: China Statistics Press, 1984, 1988-2009 [2] Statistical Bureau of Yunnan Province. Yunnan Statistical Yearbook [J]. Beijing: China Statistics Press, 1988-2009 [3] Statistical Bureau of Sichuan Province, Sichuan Survey Team. Sichuan Statistical Yearbook [J]. Beijing: China Statistics Press, 1987-1991, 1996-2009 [4] Statistical Bureau of Xinjiang Uighur Autonomous Region . Xinjiang Statistical Yearbook [J]. Beijing: China Statistics Press, 1989-1996, 1998-2009 [5] Statistical Bureau of Tibetan Autonomous Region. Tibet Statistical Yearbook [J]. Beijing: China Statistics Press, 1986-2009 [6] Statistical Bureau of Qinghai Province. Qinghai Statistical Yearbook [J]. Beijing: China Statistics Press, 1986-1994, 1996-2008. [7] County Annals Editorial Committee of Huzhu Tu Autonomous County. County Annals of Huzhu Tu Autonomous County [J]. Qinghai: Qinghai People's Publishing House, 1993 [8] Haiyan County Annals Editorial Committee. Haiyan County Annals[J]. Gansu: Gansu Cultural Publishing House, 1994 [9] Menyuan County Annals Editorial Committee. Menyuan County Annals[J]. Gansu: Gansu People's Publishing House, 1993 [10] Guinan County Annals Editorial Committee. Guinan County Annals [J]. Shanxi: Shanxi People's Publishing House, 1996 [11] Guide County Annals Editorial Committee. Guide County Annals[J]. Shanxi: Shanxi People's Publishing House, 1995 [12] Jianzha County Annals Editorial Committee. Jianzha County Annals [J]. Gansu: Gansu People's Publishing House, 2003 [13] Dari County Annals Editorial Committee. Dari County Annals [J]. Shanxi: Shanxi People's Publishing House, 1993 [14] Golmud City Annals Editorial Committee. Golmud City Annals [J]. Beijing: Fangzhi Publishing House, 2005 [15] Delingha City Annals Editorial Committee. Delingha City Annals [J]. Beijing: Fangzhi Publishing House, 2004 [16] Tianjun County Annals Editorial Committee. Tianjun County Annals [J]. Gansu: Gansu Cultural Publishing House, 1995 [17] Naidong County Annals Editorial Committee. Naidong County Annals [J]. Beijing: China Tibetology Press, 2006 [18] Gulang County Annals Editorial Committee. Gulang County Annals [J]. Gansu: Gansu People's Publishing House, 1996 [19] County Annals Editorial Committee of Akesai Kazak Autonomous County. County Annals of Akesai Kazakh Autonomous County [J]. Gansu: Gansu People's Publishing House, 1993 [20] Minxian County Annals Editorial Committee. Minxian County Annals [J]. Gansu: Gansu People's Publishing House, 1995 [21] Dangchang County Annals Editorial Committee. Dangchang County Annals [J]. Gansu: Gansu Cultural Publishing House, 1995 [22] Dangchang County Annals Editorial Committee. Dangchang County Annals(Sequel) (1985-2005) [J]. Gansu: Gansu Cultural Publishing House, 2006 [23] Wenxian County Annals Editorial Committee. Wenxian County Annals[J]. Gansu: Gansu Cultural Publishing House, 1997 [24] Kangle County Annals Editorial Committee. Kangle County Annals [J]. Shanghai: Sanlian Bookstore. 1995 [25] County Annals Editorial Committee of Jishishan (Baoan, Dongxiang, Sala) Autonomous County. County Annals of Jishishan (Baoan, Dongxiang, Sala) Autonomous County[J], Gansu: Gansu Cultural Publishing House, 1998 [26] Luqu County Annals Editorial Committee. Luqu County Annals [J]. Gansu: Gansu People's Publishing House, 2006 [27] Zhouqu County Annals Editorial Committee. Zhouqu County Annals [J]. Shanghai: Sanlian Bookstore. 1996 [28] Xiahe County Annals Editorial Committee. Xiahe County Annals [J]. Gansu: Gansu Cultural Publishing House, 1999 [29] Zhuoni County Annals Editorial Committee. Zhuoni County Annals [J]. Gansu: Gansu Nationality Publishing House, 1994 [30] Diebu County Annals Editorial Committee. Diebu County Annals [J]. Gansu: Lanzhou University Press, 1998 [31] Pengxian County Annals Editorial Committee. Pengxian County Annals [J]. Sichuan: Sichuan People's Publishing House, 1989 [32] Guanxian County Annals Editorial Committee. Guanxian County Annals [J]. Sichuan: Sichuan People's Publishing House, 1991 [33] Wenjiang County Annals Editorial Committee. Wenjiang County Annals [J]. Sichuan: Sichuan People's Publishing House, 1990 [34] Shifang County Annals Editorial Committee. Shifang County Annals [J]. Sichuan: Sichuan University Press, 1988 [35] Tianquan County Annals Editorial Committee. Tianquan County Annals [J]. Sichuan: Sichuan Science and Technology Press, 1997 [36] Shimian County Annals Editorial Committee. Shimian County Annals [J]. Sichuan: Sichuan Cishu Publishing House, 1999 [37] Lushan County Annals Editorial Committee. Lushan County Annals [J]. Sichuan: Fangzhi Publishing House, 2000 [38] Hongyuan County Annals Editorial Committee. Hongyuan County Annals [J]. Sichuan: Sichuan People's Publishing House, 1996 [39] Wenchuan County Annals Editorial Committee. Wenchuan County Annals [J]. Sichuan: Bayu Shushe, 2007 [40] Derong County Annals Editorial Committee. Derong County Annals [J]. Sichuan: Sichuan University, 2000 [41] Baiyu County Annals Editorial Committee. Baiyu County Annals [J]. Sichuan: Sichuan University Press, 1996 [42] Batang County Annals Editorial Committee. Batang County Annals [J]. Sichuan: Sichuan Nationality Publishing House, 1993 [43] Jiulong County Annals Editorial Committee. Jiulong County Annals(Sequel) (1986-2000) [J]. Sichuan: Sichuan Science and Technology Press, 2007 [44] County Annals Editorial Committee of Derung-Nu Autonomous County Gongshan. County Annals of Derung-Nu Autonomous County Gongshan [J]. Beijing: Nationality Publishing House, 2006 [45] Lushui County Annals Editorial Committee. Lushui County Annals [J]. Yunnan: Yunnan People's Publishing House, 1995 [46] Deqin County Annals Editorial Committee. Deqin County Annals [J]. Yunnan: Yunnan Nationality Publishing House, 1997 [47] Yutian County Annals Editorial Committee. Yutian County Annals [J]. Xinjiang: Xinjiang People's Publishing House, 2006 [48] Cele County Annals Editorial Committee. Cele County Annals [J]. Xinjiang: Xinjiang People's Publishing House, 2005 [49] Hetian County Annals Editorial Committee. Hetian County Annals [J]. Xinjiang: Xinjiang People's Publishing House, 2006 [50] Qiemo County Local Chronicles Editorial Committee. Qiemo County Annals [J]. Xinjiang: Xinjiang People's Publishing House, 1996 [51] Shache County Annals Editorial Committee. Shache County Annals [J]. Xinjiang: Xinjiang People's Publishing House, 1996 [52] Yecheng County Annals Editorial Committee. Yecheng County Annals [J]. Xinjiang: Xinjiang People's Publishing House, 1999 [53] Akto County Local Chronicles Editorial Committee. Akto County Annals [J]. Xinjiang: Xinjiang People's Publishing House, 1996 [54] Wuqia County Local Chronicles Editorial Committee. Wuqia County Annals [J]. Xinjiang: Xinjiang People's Publishing House, 1995

    2019-09-15 0 11 View Details

  • Map of permafrost on the Qinghai-Tibet Plateau (1:3,000,000) (1983-1996)

    The Map of Permafrost on the Qinghai-Tibet Plateau (1:3,000,000) (Shude Li and Guodong Cheng, 1996) was made by the State Key Laboratory of Frozen Soil Engineering, LIGG, CAS (currently called the Cold and Arid Regions Environmental and Engineering Research Institute, Chinese Academy of Sciences). It was based on first-hand information from the study of frozen soil and previous research papers and literature. By detailed study and consultation of aerial photographs, satellite images, the Permafrost Map along the Qinghai-Tibet Highway (1:600,000) (Boliang Tong, et al., 1983), Geomorphological Map of the Qilian Mountains (1:1,000,000) (Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, 1985), Natural Landscape Map of Qinghai-Tibetan Plateau (1:3,000,000) (Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, 1990), Quaternary Glacial Distribution Map of the Qinghai-Tibetan Plateau (1:3,000,000) (Bingyuan Li and Jijun Li, 1991), Frozen Soil Remote Sensing Map of the Western Channel Project of the South-North Water Diversion in the Region of the Tongtian-Yalong Rivers (1:500,000) (Lanzhou Institute of Glaciology and Cryopedology, Chinese Academy of Sciences, 1995), and Map of Snow, Ice, Frozen Ground in China (1:4,000,000) (Yafeng Shi and Desheng Mi, 1988), with editing on 1,000,000 aerial survey topographic maps, and the 1:3,000,000 Map of Permafrost on the Qinghai-Tibetan Plateau was then generated. It was later digitized by Zhuotong Nan of the Cold and Arid Regions Environmental and Engineering Research Institute, Chinese Academy of Sciences. The data include: 1) Digitized distribution map of frozen soil on the Qinghai-Tibetan Plateau 2) Scanned map of frozen soil map on the Qinghai-Tibetan Plateau The types of frozen soil in the digitized frozen soil map include: 0. Seasonally frozen ground; seasonal frozen soil 1. Permafrost 2. Island permafrost; 3. Continuous permafrost;

    2019-09-15 0 6 View Details

  • Qilian Mountains integrated observatory network: Dataset of Qinghai Lake integrated observatory network (an observation system of meteorological elements gradient of Alpine meadow and grassland ecosystem superstation, 2018)

    This dataset includes data recorded by the Qinghai Lake integrated observatory network obtained from an observation system of Meteorological elements gradient of the Alpine meadow and grassland ecosystem Superstation from August 31 to December 24, 2018. The site (98°35′41.62″E, 37°42′11.47″N) was located in the alpine meadow and alpine grassland ecosystem, near the SuGe Road in Tianjun County, Qinghai Province. The elevation is 3718m. The installation heights and orientations of different sensors and measured quantities were as follows: air temperature and humidity profile (HMP155; 3, 5, 10, 15, 20, 30, and 40 m, towards north), wind speed and direction profile (windsonic; 3, 5, 10, 15, 20, 30, and 40 m, towards north), air pressure (PTB110; 3 m), rain gauge (TE525M; 10m of the platform in west by north of tower), four-component radiometer (CNR4; 6m, towards south), two infrared temperature sensors (SI-111; 6 m, towards south, vertically downward), photosynthetically active radiation (PQS1; 6 m, towards south, each with one vertically downward and one vertically upward, soil heat flux (HFP01; 3 duplicates below the vegetation; -0.06 m), soil temperature profile (109; -0.05、-0.10、-0.20、-0.40、-0.80、-1.20、-2.00、-3.00 and -4.00m), soil moisture profile (CS616; -0.05、-0.10、-0.20、-0.40、-0.80、-1.20、-2.00、-3.00 and -4.00m). The observations included the following: air temperature and humidity (Ta_3 m, Ta_5 m, Ta_10 m, Ta_15 m, Ta_20 m, Ta_30 m, and Ta_40 m; RH_3 m, RH_5 m, RH_10 m, RH_15 m, RH_20 m, RH_30 m, and RH_40 m) (℃ and %, respectively), wind speed (Ws_3 m, Ws_5 m, Ws_10 m, Ws_15 m, Ws_20 m, Ws_30 m, and Ws_40 m) (m/s), wind direction (WD_3 m, WD_5 m, WD_10 m, WD_15 m, WD_20 m, WD_30m, and WD_40 m) (°), air pressure (press) (hpa), precipitation (rain) (mm), four-component radiation (DR, incoming shortwave radiation; UR, outgoing shortwave radiation; DLR_Cor, incoming longwave radiation; ULR_Cor, outgoing longwave radiation; Rn, net radiation) (W/m^2), infrared temperature (IRT_1 and IRT_2) (℃), soil heat flux (Gs_1, Gs_2, and Gs_3) (W/m^2), soil temperature (Ts_5cm、Ts_10cm、Ts_20cm、Ts_40cm、Ts_80cm、Ts_120cm、Ts_200cm、Ts_300cm、Ts_400cm) (℃), soil moisture (Ms_5cm、Ms_10cm、Ms_20cm、Ms_40cm、Ms_80cm、Ms_120cm、Ms_200cm、Ms_300cm、Ms_400cm) (%, volumetric water content), photosynthetically active radiation of upward and downward (PAR_D_up and PAR_D_down) (μmol/ (s m-2)). The data processing and quality control steps were as follows: (1) The AWS data were averaged over intervals of 10 min for a total of 144 records per day. The missing data were denoted by -6999. (2) Data in duplicate records were rejected. (3) Unphysical data were rejected. (4) The data marked in red are problematic data. (5) The format of the date and time was unified, and the date and time were collected in the same column, for example, date and time: 2018/8/31 10:30. Moreover, suspicious data were marked in red.

    2019-09-15 0 11 View Details

  • Spatial distribution maps of lakes over the Tibetan Plateau (1995-2015)

    This data set contains 5 data entities. The spatial distribution data of the lakes on the Tibetan Plateau extracted from Landsat images are used, and the time range is from September to November in 1995, 2000, 2005, 2010 and 2015. The data are made jointly by the Third Pole Environment Database and the Geospatial Data Cloud. The object-oriented method is used for lake extraction. (1) Data preprocessing occurs first. Because this paper only uses the first 7 wave bands of Landsat 8 data, band synthesis is carried out for 1-7 wave bands, and the influence of cloud cover on lake extraction is examined. The data are replaced if the influence is too great. (2) Multiscale segmentation of images is performed in eCognition. Because the spectral characteristics of the lake are uniform, spectral segmentation is used again on this basis. (3) The average characteristics of the 5, 6, and 7 bands (Brigh-567) are used for preliminary water extraction, and for some unextracted lakes, NDWI is used for supplementary extraction. (4) At this time, some shadows remain mistakenly extracted, and most of them can be excluded using NDWI<0.05. At the same time, based on the actual situation, the shadows can be eliminated using the value of the first band. (5) To ensure the accuracy, manually check the unextracted independent lake and the mistakenly extracted object and manually modify it. (6) On this basis, use NDWI>0 for the second extraction around the extracted water body and define the edge of the lake. (7) Check again, then merge the objects and export the results. The data effectively remove the influence of mountain shadows, clouds and cloud shadows, snow cover, glaciers and other non-water objects. The lake boundary is accurate and clear, and the error is controlled within a pixel. The accuracy requirement is 30 meters, which is a pixel.

    2019-09-15 0 22 View Details

  • Qilian Mountains integrated observatory network: Dataset of the Heihe River Basin integrated observatory network (eddy covariance system of Sidaoqiao superstation, 2018)

    This dataset contains the flux measurements from the Sidaoqiao superstation eddy covariance system (EC) in the downstream reaches of the Heihe integrated observatory network from January 1 to December 31 in 2018. The site (101.1374° E, 42.0012° N) was located in the Ejina Banner in Inner Mongolia Autonomous Region . The elevation is 873 m. The EC was installed at a height of 3.2 m, and the sampling rate was 10 Hz. The sonic anemometer faced north, and the separation distance between the sonic anemometer and the CO2/H2O gas analyzer (CSAT3&Li7500A) was 0.15 m. The raw data acquired at 10 Hz were processed using the Eddypro post-processing software, including the spike detection, lag correction of H2O/CO2 relative to the vertical wind component, sonic virtual temperature correction, coordinate rotation (2-D rotation), corrections for density fluctuation (Webb-Pearman-Leuning correction), and frequency response correction. The EC data were subsequently averaged over 30 min periods. The observation data quality was divided into three classes according to the quality assessment method of stationarity (Δst) and the integral turbulent characteristics test (ITC): class 1-3 (high quality), class 4-6 (good), class 7-8 (poor, better than gap filling data), class9 (rejected). In addition to the above processing steps, the half-hourly flux data were screened in a four-step procedure: (1) data from periods of sensor malfunction were rejected; (2) data collected before or after 1 h of precipitation were rejected; (3) incomplete 30 min data were rejected when the missing data constituted more than 10% of the 30 min raw record. There were 48 records per day, and the missing data were replaced with -6999. Suspicious data were marked in red. Latent heat flux during November 9 to 21, 2018 were missing due to the sensor malfunction of CO2/H2O gas analyzer. The released data contained the following variables: data/time, wind direction (Wdir, °), wind speed (Wnd, m/s), the standard deviation of the lateral wind (Std_Uy, m/s), virtual temperature (Tv, ℃), H2O mass density (H2O, g/m3), CO2 mass density (CO2, mg/m3), friction velocity (ustar, m/s), stability (L), sensible heat flux (Hs, W/m2), latent heat flux (LE, W/m2), carbon dioxide flux (Fc, mg/ (m2s)), quality assessment of the sensible heat flux (QA_Hs), quality assessment of the latent heat flux (QA_LE), and quality assessment of the carbon flux (QA_Fc). In this dataset, the time of 0:30 corresponds to the average data for the period between 0:00 and 0:30; the data were stored in *.xls format. Detailed information can be found in the suggested references. For more information, please refer to Liu et al. (2018) (for sites information), Liu et al. (2011) for data processing) in the Citation section.

    2019-09-15 0 16 View Details

  • Statistical yearbook of Xinjiang (2006-2015)

    Statistical Yearbook of Xinjiang 2006-2015, data from China statistical database: www.shujuku.org.The xinjiang statistical Yearbook system collects the economic and social statistical data of the whole region, regions and counties (cities) from 2006 to 2015. It is an annual publication that comprehensively reflects the economic and social development of xinjiang uygur autonomous region.The Yearbook includes: national economic accounting;Population and employment;Investment in fixed assets;Foreign economic trade and tourism;Resources and environment;Energy;Prices;Agriculture;Industry;The construction industry;Transportation and postal services;Wholesale and retail, accommodation and catering;The financial sector.Education, technology and culture;Statistics on health and environmental conditions.This data source is based on several important sectors of the country and has high credibility. It is the basis for understanding the impact of cryosphere changes on socio-ecology-economy, and also the basis for offering advice on how to deal with adverse changes.

    2019-09-15 0 5 View Details

  • Data on enterprises above the state-designated scale in the Tibetan Autonomous Region (2000-2016)

    The data set contains statistics on enterprises in Tibet over time. The data were derived from the Tibet Society and Economics Statistical Yearbook and Tibet Statistical Yearbook. The accuracy of the data is consistent with that of the statistical yearbooks. The table contains 5 fields. Field 1: Districts and counties Field 2: Year Field 3: Number of industrial enterprises above the state-designated scale Field 4: Total industrial output value of industrial enterprises above the state-designated scale (current price), unit: 10,000 yuan Field 5: Urban completed investment in fixed assets, unit: 10,000 yuan

    2019-09-15 0 1 View Details

  • Inventory dataset of glacial lakes in Himachal Pradesh, India (2004)

    This glacial lake inventory receives joint support from the International Centre for Integrated Mountain Development (ICIMOD) and United Nations Environment Programme/Regional Resource Centre, Asia and the Pacific (UNEP/RRC-AP). 5. This glacial lake inventory referred to Landsat 4/5 (MSS and TM), SPOT(XS), IRS-1C/1D(LISS-III) and other remote sensing data. It reflects the current situation of glacial lakes with areas larger than 0.01 km2 in 2004. 6. Glacial Lake Inventory Coverage: Yamuna basin, Ravi basin, Chenab basin, Satluj River Basin and others. 7. The Glacial Lake Inventory includes glacial lake inventory, glacial lake type, glacial lake width, glacial lake orientation, glacial lake length from the glacier and other attributes. 8. Projection parameter: Projection: Albers Equal Area Conic Ellipsoid: WGS 84 Datum: WGS 1984 False easting: 0.0000000 False northing: 0.0000000 Central meridian: 82° 30’E Central parallel: 0° 0’ N Latitude of first parallel: 20° N Latitude of second parallel: 35° N For a detailed data description, please refer to the data file and report.

    2019-09-15 0 4 View Details

  • Data on workers in primary, secondary, and tertiary industries in Qinghai (1952-2016)

    The data set contains data on workers in primary, secondary, and tertiary industries in Qinghai over time. The data were derived from the Qinghai Society and Economics Statistical Yearbook and Qinghai Statistical Yearbook. The accuracy of the data is consistent with that of the statistical yearbooks. The table contains 8 fields. Field 1: Year of the data Field 2: The total number of workers, unit: 10,000 Field 3: Number of workers in primary industries, unit: 10,000 Field 4: Number of workers in secondary industries, unit: 10,000 Field 5: Number of workers in tertiary industries, unit: 10,000 Field 6: Proportion of the primary industry workers, unit: % Field 7: Proportion of the secondary industry workers, unit: % Field 8: Proportion of the tertiary industry workers, unit: %

    2019-09-15 0 1 View Details

  • Precipitation observation data of Jaggang Snow Mountain (2016-2017)

    This is the precipitation observation data of the observation point in Jaggang Snow Mountain. It can be used in Glaciology, Climatology, Environmental Change, Hydrologic Process in Cold Regions and other disciplinary areas. The data is observed from September 14, 2016 to June 19, 2017. It is measured by automatic rain gauge and a piece of data is recorded every 60 minutes. The original data forms a continuous time series after quality control, and the daily mean index data is obtained through calculation. The original data meets the accuracy requirements of China Meteorological Administration (CMA) and the World Meteorological Organization (WMO) for meteorological observation. Quality control includes eliminating the systematic error caused by the missing point data and sensor failure. The data is stored as an excel file.

    2019-09-15 0 2 View Details

  • Qilian Mountains integrated observatory network: Dataset of the Heihe River Basin integrated observatory network (automatic weather station of Huazhaizi desert steppe station, 2018)

    This dataset includes data recorded by the Heihe integrated observatory network obtained from the automatic weather station (AWS) at the observation system of Meteorological elements gradient of Huazhaizi desert steppe station from January 1 to December 31, 2018. The site (100.3201°E, 38.7659°N) was located on a desert steppe surface in the Huazhaizi, which is near Zhangye city, Gansu Province. The elevation is 1731 m. The installation heights and orientations of different sensors and measured quantities were as follows: air temperature and humidity profile (HMP45AC; 5 and 10 m, north), wind speed and direction profile (windsonic; 5 and 10 m, north), air pressure (CS100; 2 m), rain gauge (TE525M; 10 m), four-component radiometer (CNR1; 6 m, south), two infrared temperature sensors (SI-111; 6 m, south, vertically downward), soil heat flux (HFP01; 3 duplicates, -0.06 m), soil temperature profile (109ss-L; 0, -0.02, -0.04, -0.1, -0.2, -0.4, -0.6, -1.0 m), soil moisture profile (ML3; -0.02, -0.04, -0.1, -0.2, -0.4, -0.6, -1.0 m). The observations included the following: air temperature and humidity (Ta_5 m and Ta_10 m; RH_5 m and RH_10 m) (℃ and %, respectively), wind speed (Ws_5 m and Ws_10 m) (m/s), wind direction (WD_5 m and WD_10 m) (°), air pressure (press) (hpa), precipitation (rain) (mm), four-component radiation (DR, incoming shortwave radiation; UR, outgoing shortwave radiation; DLR_Cor, incoming longwave radiation; ULR_Cor, outgoing longwave radiation; Rn, net radiation) (W/m^2), infrared temperature (IRT_1 and IRT_2) (℃), soil heat flux (Gs_1, Gs_2, and Gs_3) (W/m^2), soil temperature (Ts_0 cm, Ts_2 cm, Ts_4 cm, Ts_10 cm, Ts_20 cm, Ts_40 cm, Ts_60 cm, Ts_100 cm) (℃), soil moisture (Ms_2 cm, Ms_4 cm, Ms_10 cm, Ms_20 cm, Ms_40 cm, Ms_60 cm, Ms_100 cm) (%). The data processing and quality control steps were as follows: (1) The AWS data were averaged over intervals of 10 min for a total of 144 records per day. The missing data were denoted by -6999. Due to the malfunction of soil moisture sensor, data during 1.1-1.7, 8.22-8.31, and 9.4-9.12 were missing; (2) Data in duplicate records were rejected. (3) Unphysical data were rejected. (4) The data marked in red are problematic data. (5) The format of the date and time was unified, and the date and time were collected in the same column, for example, date and time: 2018-6-10 10:30. (6) Finally, the naming convention was AWS+ site no. Moreover, suspicious data were marked in red. For more information, please refer to Liu et al. (2018) (for sites information), Liu et al. (2011) for data processing) in the Citation section.

    2019-09-15 0 13 View Details