Brief Introduction: 高寒区一般指海拔较高、气候寒冷的地区。中国的高寒区包括整个青藏高原,以及甘肃、内蒙古和新疆的高山地区,总面积约为290万平方公里。高寒区形成了特殊的大气过程、水文过程及生态过程,其环境变化研究是地表过程研究的重要组成部分,是开展地球系统集成研究的重要切入口。高寒区广泛分布着冰川、冻土、积雪和湿地等,是我国大江大河的源头区和重要的生态屏障区,同时又是气候条件恶劣、生态环境脆弱、经济发展水平低的地区。 从阐明高寒区大气过程、水文过程、生态过程及其相互间的联系这一科学问题的角度考虑,中国科学院组织院内所属的17个野外站(点),并通过与其他系统的野外站联合组建“高寒区地表过程与环境监测研究网络”(简称“高寒网”),通过凝炼科学问题、整合监测资源、统一观测手段、完善观测能力、提高观测水平,实现对高寒区地表过程与环境变化的长期连续监测,为地球系统集成研究、关键区域对全球变化的影响与响应、定量化辨识人类活动在全球变化中的作用等研究提供平台支撑;为揭示大江大河源头区气候变化规律和水资源形成转化规律、合理开发利用水资源,探明生态系统结构与服务功能变化、构建生态屏障,掌握冰雪冻融等自然灾害发生机理、科学防灾减灾,以及促进区域经济社会可持续发展等提供数据支持。 “高寒网”以中国科学院所属17个野外站为主体,由中国科学院作为牵头单位,组织成立“高寒网”科学委员会,把握网络研究的重要科学问题,指导网络建设的计划和发展方向。设立网络综合中心,负责组织研究和开展网络建设的具体实施工作,下设办公室、观测技术服务组和数据集成管理组。网络实施合同式管理,各参建单位需签定建设/研究合同,履行合同规定的各项任务,接受网络组织部门的考核与验收。网络建设过程中,本着科研优先,协调发展的原则,相对均衡配置网络内部各观测台站的基础设施以及观测仪器,获得的数据在网络内部实现无偿共享;本着共享开放的原则,网络的各观测站对全国开放,根据具体工作任务和成本的需要,通过协商、协议或合同的形式与相关单位开展合作,获得的数据本着先网络,再部门,后社会的原则,使原始观测数据逐步共享;本着以我为主,扩大交流的原则,整个网络开展有计划、有协调地与国外科研单位和大学合作,通过合作提高网络观测水平与扩大观测内容,围绕提高网络整体观测和研究实力的目标开展工作。“高寒网”由中国科学院层面统筹进行经费资源配置。

Number of Datasets: 65

  • Black carbon concentration at 5 stations over Tibetan Plateau (2018)

    As the “water tower of Asia”, Tibetan Plateau (TP) are the resource of major rivers in Asia. Black carbon (BC) aerosol emitted from surrounding regions can be transported to the inner TP by atmospheric circulation and consequently deposited in snow, which can significantly influence precipitation and mass balance of glaciers. Five Aethalometers are used to mornitoring black carbon concentration at 5 stations on the Tibetan Plateau. It can provide basic dataset to study the effects of BC to the environment and climate over the Tibetan Plateau, as well as the pollutants transport.

    2019-09-12 0 11 View Details

  • Qilian Mountains integrated observatory network: cold and arid research network of Lanzhou university (eddy covariance system of Guazhou station, 2018)

    This dataset contains the flux measurements from the Guazhou station eddy covariance system (EC) in the middle reaches of the Heihe integrated observatory network from September 24 to December 31 in 2018. The site (95.673E, 41.405N) was located in a desert in Liuyuan Guazhou, which is near Jiuquan city in Gansu Province. The elevation is 2016 m. The EC was installed at a height of 4.0 m, and the sampling rate was 10 Hz. The sonic anemometer faced north, and the separation distance between the sonic anemometer and the CO2/H2O gas analyzer (CSAT3&Li7500A) was 0.17 m. The raw data acquired at 10 Hz were processed using the Eddypro post-processing software, including the spike detection, lag correction of H2O/CO2 relative to the vertical wind component, sonic virtual temperature correction, coordinate rotation (2-D rotation), corrections for density fluctuation (Webb-Pearman-Leuning correction), and frequency response correction. The EC data were subsequently averaged over 30 min periods. The observation data quality was divided into three classes according to the quality assessment method of stationarity (Δst) and the integral turbulent characteristics test (ITC): class 1-3 (high quality), class 4-6 (good), class 7-8 (poor, better than gap filling data), class9 (rejected). In addition to the above processing steps, the half-hourly flux data were screened in a four-step procedure: (1) data from periods of sensor malfunction were rejected; (2) data collected before or after 1 h of precipitation were rejected; (3) incomplete 30 min data were rejected when the missing data constituted more than 3% of the 30 min raw record; and (4) data were rejected at night when the friction velocity (u*) was less than 0.1 m/s. There were 48 records per day, and the missing data were replaced with -6999. Suspicious data were marked in red. The released data contained the following variables: data/time, wind direction (Wdir, °), wind speed (Wnd, m/s), the standard deviation of the lateral wind (Std_Uy, m/s), virtual temperature (Tv, ℃), H2O mass density (H2O, g/m3), CO2 mass density (CO2, mg/m3), friction velocity (ustar, m/s), stability (z/L), sensible heat flux (Hs, W/m2), latent heat flux (LE, W/m2), carbon dioxide flux (Fc, mg/ (m2s)), quality assessment of the sensible heat flux (QA_Hs), quality assessment of the latent heat flux (QA_LE), and quality assessment of the carbon flux (QA_Fc). In this dataset, the time of 0:30 corresponds to the average data for the period between 0:00 and 0:30; the data were stored in *.xls format. Detailed information can be found in the suggested references. For more information, please refer to Liu et al. (2011) for data processing) in the Citation section.

    2019-09-12 0 5 View Details

  • Asian monsoon experiment on the Tibetan Plateau (GAME/Tibet) dataset for global energy water cycle (1997-1998)

    The GAME/Tibet project conducted a short-term pre-intensive observing period (PIOP) at the Amdo station in the summer of 1997. From May to September 1998, five consecutive IOPs were scheduled, with approximately one month per IOP. More than 80 scientific workers from China, Japan and South Korea went to the Tibetan Plateau in batches and carried out arduous and fruitful work. The observation tests and plans were successfully completed. After the completion of the IOP in September, 1998, five automatic weather stations (AWS), one Portable Atmospheric Mosonet (PAM), one boundary layer tower and integrated radiation observatory (Amdo) and nine soil temperature and moisture observation stations have been continuously observed to date and have obtained extremely valuable information for 8 years and 6 months consecutively (starting from June 1997). The experimental area is located in Nagqu, in northern Tibet, and has an area of 150 km × 200 km (Fig. 1), and observation points are also established in D66, Tuotuohe and the Tanggula Mountain Pass (D105) along the Qinghai-Tibet Highway. The following observation stations (sites) are set up on different underlying surfaces including plateau meadows, plateau lakes, and desert steppe. (1) Two multidisciplinary (atmosphere and soil) observation stations, Amdo and NaquFx, have multicomponent radiation observation systems, gradient observation towers, turbulent flux direct measurement systems, soil temperature and moisture gradient observations, radiosonde, ground soil moisture observation networks and multiangle spectrometer observations used as ground truth values for satellite data, etc. (2) There are six automatic weather stations (D66, Tuotuohe, D105, D110, Nagqu and MS3608), each of which has observations of wind, temperature, humidity, pressure, radiation, surface temperature, soil temperature and moisture, precipitation, etc. (3) PAM stations (Portable Automated Meso - net) located approximately 80 km north and south of Nagqu (MS3478 and MS3637) have major projects similar to the two integrated observation stations (Amdo and NaquFx) above and to the wind, temperature and humidity turbulence observations. (4) There are nine soil temperature and moisture observation sites (D66, Tuotuohe, D110, WADD, NODA, Amdo, MS3478, MS3478 and MS3637), each of which has soil temperature measurements of 6 layers and soil moisture measurement of 9 layers. (5) A 3D Doppler Radar Station is located in the south of Nagqu, and there are seven encrypted precipitation gauges in the adjacent (within approximately 100 km) area. The radiation observation system mainly studies the plateau cloud and precipitation system and serves as a ground true value station for the TRMM satellite. The GAME-Tibet project seeks to gain insight into the land-atmosphere interaction on the Tibetan Plateau and its impact on the Asian monsoon system through enhanced observational experiments and long-term monitoring at different spatial scales. After the end of 2000, the GAME/Tibet project joined the “Coordinated Enhanced Observing Period (CEOP)” jointly organized by two international plans, GEWEX (Global Energy and Water Cycle Experiment) and CL IVAR (Climate Change and Forecast). The Asia-Australia Monsoon Project (CAMP) on the Tibetan Plateau of the Global Coordinated Enhanced Observation Program (CEOP) has been started. The data set contains POP data for 1997 and IOP data for 1998. Ⅰ. The POP data of 1997 contain the following. 1. Precipitation Gauge Network (PGN) 2. Radiosonde Observation at Naqu 3. Analysis of Stable Isotope for Water Cycle Studies 4. Doppler radar observation 5. Large-Scale Hydrological Cycle in Tibet (Link to Numaguchi's home page) 6. Portable Automated Mesonet (PAM) [Japanese] 7. Ground Truth Data Collection (GTDC) for Satellite Remote Sensing 8. Tanggula AWS (D105 station in Tibet) 9. Syamboche AWS (GEN/GAME AWS in Nepal) Ⅱ. The IOP data of 1998 contain the following. 1. Anduo (1) PBL Tower, 2) Radiation, 3) Turbulence SMTMS 2. D66 (1) AWS (2) SMTMS (3) GTDC (4) Precipitation 3. Toutouhe (1) AWS (2) SMTMS (3 )GTDC 4. D110 (1) AWS (2) SMTMS (3) GTDC (4) SMTMS 5. MS3608 (1) AWS (2) SMTMS (3) Precipitation 6. D105 (1) Precipitation (2) GTDC 7. MS3478(NPAM) (1) PAM (2) Precipitation 8. MS3637 (1) PAM (2) SMTMS (3) Precipitation 9. NODAA (1) SMTMS (2) Precipitation 10. WADD (1) SMTMS (2) Precipitation (3) Barometricmd 11. AQB (1) Precipitation 12. Dienpa (RS2) (1) Precipitation 13. Zuri (1) Precipitation (2) Barometricmd 14. Juze (1) Precipitation 15. Naqu hydrological station (1) Precipitation 16. MSofNaqu (1) Barometricmd 16. Naquradarsite (1)Radar system (2) Precipitation 17. Syangboche [Nepal] (1) AWS 18. Shiqu-anhe (1) AWS (2) GTDC 19. Seqin-Xiang (1) Barometricmd 20. NODA (1)Barometricmd (2) Precipitation (3) SMTMS 21. NaquHY (1) Barometricmd (2) Precipitation 22. NaquFx(BJ) (1) GTDC(2) PBLmd (3) Precipitation 23. MS3543 (1) Precipitation 24. MNofAmdo (1) Barometricmd 25. Mardi (1) Runoff 26. Gaize (1) AWS (2) GTDC (3) Sonde A CD of the data GAME-Tibet POP/IOP dataset cd (vol. 1) GAME-Tibet POP/IOP dataset cd (vol. 2)

    2019-09-12 0 14 View Details

  • Water level and water temperature data for Ranwu Lake in Southeast Tibet (2009-2016)

    This data set contains the daily values of water temperature and water level change in Ranwu Lake in Tibet from May 15, 2009, to December 31, 2016. Observation instrument model: an automatic HOBO water level and temperature logger U20-001-01; acquisition time: 30 minutes. The data were collected automatically. The observations and data collection were performed in strict accordance with the instrument operating specifications, and the data have been published in relevant academic journals. Data with obvious errors were removed, and the missing data were replaced by null values. Data collection location: Ranwu Lake, southeast Tibet Middle lake outlet: longitude: 96°46'16"; latitude: 29°29'28"; elevation: 3928 m. Lower Lake outlet: longitude: 96°38'52"; latitude: 29°28'52"; elevation: 3923 m. Laigu upper Lake: longitude: 94°49'49"; latitude: 29°18'07"; elevation: 4025 m. This data contains fileds as follows: Field 1: Site Number Data type: Alphanumeric characters (50) Field 2: Time Data type: Date type Field 3: Water temperature, °C Data type: Double-precision floating-point format Field 4: Relative water level, cm Data type: Double-precision floating-point format

    2019-09-12 0 9 View Details

  • Meteorological observation data of the terminus of Naimona'nyi Glacier (2011-2017)

    This data set includes the temperature, relative humidity, and other daily values at the end of the observation point of the terminus of Naimona’nyi Glacier The data is observed from July 3, 2011 to September 15, 2017. It is measured by automatic meteorological station (Onset Company) and a piece of data is recorded every 60minutes. The original data forms a continuous time series after quality control, and the daily mean index data is obtained through calculation. The original data meets the accuracy requirements of China Meteorological Administration (CMA) and the World Meteorological Organization (WMO) for meteorological observation. Quality control includes eliminating the systematic error caused by the missing point data and sensor failure. The data is stored as an excel file.

    2019-09-12 0 0 View Details

  • The dataset of atmospheric chemical composition in Namcu and Muztagh Ata (2005-2009)

    The data include three data sets of Namcu and Muztagh Ata: an atmospheric aerosol data set of monthly average values of TSP, lithium, sodium and other elements; an atmospheric precipitation chemical data set of monthly average values of soluble sodium ions, potassium ions, magnesium ions, calcium ions and other ions; and a data set of chemical compositions of snow ice in the Zhadang Glacier of Namcu Basin of the concentrations of soluble sodium ions, potassium ions, magnesium ions, calcium ions and other ions in snow pits collected in different months. The data can be used in conducting located observations of atmospheric aerosol element content, precipitation chemistry, and glacier snow ice chemical records in the Namco and Muztagh Ata areas. The samples were processed at the Key Laboratory of Tibetan Environment Changes and Land Surface Processes of CAS using ICS2500 and ICS2000 ion-chromatographic analyzers to determine the concentration of soluble anions and cations in the samples. Data collection and processing: 1. The automatic rain gauges were erected in the typical regions of the Tibetan Plateau (the Namco Basin and the Muztagh Ata Peak area) to collect precipitation samples. The precipitation samples were collected using a SYC-2 type rainfall sampler that comprised a collector, rain sensor and gland drive. The sample collector was provided with a rain collection bucket and a dust collection bucket, and the weather condition was sensed by the rain sensor. The rain collection bucket would be opened when it started to rain, and the gland would be pressed onto the dust collection bucket. Meanwhile, the date and the rain start and end times were automatically recorded. When the rain stopped, the gland automatically flipped to the rain collection bucket to complete a rainfall record. The collected samples were placed in 20 mL clean high-density polyethylene plastic bottles and refrigerated in a -20 °C refrigerator. They were frozen during transportation and storage until right before being analyzed, when they would be taken from the refrigerator and thawed at room temperature (20 °C). They were then processed at the Key Laboratory of Tibetan Environment Changes and Land Surface Processes CAS using ICS2500 and ICS2000 ion-chromatographic analyzers to determine the concentration of soluble anions and cations in the precipitation. 2. The atmospheric aerosol sampler installed at Namco Station was 4 m above the ground and included a vacuum pump, which was powered by solar panels and batteries. The air flux was recorded by an automatic flow meter, and the instantaneous flow rate was approximately 16.7 L/min. The air flux took the meteorological parameter conversion of the Namco area as the standard volume. A Teflon filter with a diameter of 47 mm and a pore size of 0.4 & mu; m was used. The sample interval was 7 days, and the total sample flow rate of each sample was approximately 120-150 m³. Each sample was individually placed in a disposable filter cartridge and stored at low temperature in a refrigerator. Before and after sampling, the filter was placed in a constant temperature (20 ± 5 °C) and constant humidity (40 & plusmn; 2%) environment for 48 hours and weighed with a 1/10000 electronic balance (AUW220D, Shimadu); the difference between the weights before and after was the weight of the aerosol sample on the filter. The collected samples were processed at the Key Laboratory of Tibetan Environment Changes and Land Surface Processes CAS by ICP-MS to determine the concentrations of 18 elements. Strict measures were taken during indoor and outdoor operations to prevent possible contamination. 3. A precleaned plastic shovel was used to collect a sample every 5 cm from the lower part of the snow pit (samples were collected every 10 cm in some snow pits). The samples were dissolved at room temperature, placed in 20 mL clean high-density polyethylene plastic bottles and stored in a refrigerator at -20 °C. The samples were frozen during transportation and storage until they were taken out of the refrigerator before the analysis and melted at room temperature. The samples were processed at the Key Laboratory of Tibetan Environment Changes and Land Surface Processes CAS using ICS2500 and ICS2000 ion-chromatographic analyzers to determine the concentrations of soluble anions and cations in the samples. Clean clothing, disposable masks and plastic gloves should be worn during the manual collection of glacier snow ice chemical samples to prevent contamination. The data set was processed by forming a continuous sequence of monthly mean values after the raw data were quality controlled. It meets the accuracy of routine monitoring research on precipitation, aerosol, snow and ice records in China and the world and is satisfactory for comparative study with relevant climate change records.

    2019-09-12 0 3 View Details

  • Annual variation characteristic value of runoff at the major hydrological stations of the Yarlung Zangbo River (1956-2000)

    This dataset contains the annual variation of runoff from the major hydrological stations in the Yarlung Zangbo River (annual average runoff volume, annual extremum ratio, coefficient of variation, etc.). It can be used to study the hydrological characteristics of the Yarlung Zangbo River. The original data are the national hydrological station data, and the quality requirements are the same as the national standards. Spatial Coverage: 4 hydrological stations in the main streams of the Yarlung Zangbo River basin, which are Lazi, Nugesha, Yangcun and Nuxia. This data sheet has five fields. Field 1: Station Name Field 2: Annual average runoff volume Field 3: Annual Extreme Ratio Field 4: Coefficient of variation Field 5: Data Series Length

    2019-09-12 0 14 View Details

  • The soil temperature and moisture dataset of the Muztagh Ata station (2013-2016)

    This data set contains the daily values of soil temperature and moisture at different depths observed from the Integrated Observation and Research Station of the Westerly Environment in Muztagh Ata from January 1, 2013, to December 31, 2015. The data were collected digitally and automatically by observation instruments. The data set was processed by forming a continuous time sequence after the raw data were quality controlled. Observation and collection of the data were performed in strict accordance with the instrument operating specifications, and the systematic error caused by the missing point data and the sensor failure were eliminated. This table contains 12 fields. Field 1: Station Number Data type: Character (50) Field 2: Time Data type: date type Fields 3 to 7: Soil temperature (different depths) Data type: double precision floating point Unit: °C Fields 8 to 12: Soil moisture (different depths) Data type: double precision floating point Unit: %

    2019-09-12 0 14 View Details

  • Dataset of alpine timberlines in Southern Tibet (2005-2008)

    This data set mainly includes meteorological data and soil moisture data collected from 2005 to 2008 at the Sherjila Mountain Alpine Timberline Observation Site of the Integrated Observation and Research Station of the Alpine Environment in Southeast Tibet. The data set of alpine timberline observations in southeast Tibet includes 1) the meteorological data set and 2) the soil moisture data set. The meteorological data set includes wind speed, temperature (1, 3 m), relative humidity (1, 3 m), soil heat flux (-5, -20, -60 cm), soil temperature (-5, -20, -60 cm), air pressure, total radiation, net radiation, photosynthetically active radiation, infrared radiation (660, 730 nm), atmospheric longwave radiation, ground longwave radiation, surface temperature, precipitation, and snow thickness. The soil moisture data set includes vegetation type and soil water content (-5, -20, -60 cm). Instruments used for each variable: Temperature: Air temperature probe, produced in Taiwan, model TRH-S. Relative humidity: Model TRH-S, produced in Taiwan. Wind speed: Anemoscope, produced in Taiwan, model 03102. Barometric Pressure: Barometric pressure sensor, produced in Taiwan, model BP0611A. Atmospheric longwave radiation: Pyrgeometer, produced by the Kipp & Zonen Company of the Netherlands, model CG3. Ground longwave radiation: Pyrgeometer, produced by the Kipp & Zonen Company of the Netherlands, model CG3. Total radiation: Pyranometer, produced by the Kipp & Zonen Company of the Netherlands, model CM3. Net radiation: Net radiometer, produced by the Kipp & Zonen Company of the Netherlands, model NR-Lite. Photosynthetically active radiation: PAR-Sensor, produced by the Kipp & Zonen Company of the Netherlands, model MS-PAR. Infrared radiation: Infrared radiation sensor, produced by the Skye Company of the UK, model SKY110. Rainfall: Rain gauge, produced in Taiwan, model 7852 M. Snow thickness: Ultrasonic snow depth sensor, produced in the United States, model 260-700. Soil temperature: Soil temperature probe, produced by the Onset Company of the United States, model 12-Bit. Soil heat flux: Soil heat flux plate, produced by the Hukseflux Company of the Netherlands, model HFP01. Soil moisture content: Soil moisture sensor, produced by the Onset Company of the United States, model S-SMA-M003. The observations and data acquisition were carried out in strict accordance with the instrument operating specifications. Each instrument was rigorously validated and calibrated by the supplier before installation to ensure the accuracy of the observation data. Data with significant errors were removed when processing the data table.

    2019-09-12 0 10 View Details

  • Observation data of temperature and rainfall in permafrost regions of Qinghai-Tibet Engineering Corridor (1956-2012)

    The data set includes the trends of annual average temperature and rainfall changes at the three meteorological stations in the permafrost section of the Qinghai-Tibet Engineering Corridor over the past 50 years. According to the recorded data, the annual average temperature is experiencing a gradually rising process. The annual average temperature change over the past 56 years in Wudaoliang and Tuotuohe has a good correlation (r2=0.83). In 1957, the average annual temperatures of Wudaoliang and Tuotuohe were -6.6 °C and -5.1 °C, respectively. By 2012, the temperatures of the two stations were -4.6 and -3.1 °C, and the total temperature has risen by approximately 2 °C. The annual average temperature rises by 0.03-0.04 °C. The annual average temperature changes over the past 47 years in Wudaoliang and Anduo also have a good correlation (r2=0.84). In 1966, the average annual temperature in Anduo was -3.0 °C. By 2012, the temperature has risen to -1.8 °C, corresponding to a total temperature rise of approximately 1.2 °C and an annual average temperature rise of 0.02-0.03 °C. The annual average temperature in Wudaoliang and Tuotuohe rose slightly faster than that in Anduo. However, the change in rainfall was more volatile than that of temperature. The correlation between the rainfall change in Wudaoliang and Tuotuohe over the past 56 years is relatively poor (r2=0.60). In 1957, the annual rainfall amounts in Wudaoliang and Tuotuohe were 302 and 309 mm, respectively. By 2012, the annual rainfall amounts at the two stations were 426 and 332 mm. Thus, the rainfall in Wudaoliang had increased by 124 mm, with an annual rainfall increase of approximately 2 mm. In contrast, the annual rainfall in Tuotuohe only increased by 0.4 mm. The correlation between the rainfall change in Wudaoliang and Anduo over the past 47 years is also poor (r2=0.35). In 1966, and 2012, the annual average rainfall amounts in Anduo were 354 and 404 mm. The total increase was approximately 50 mm, and the annual average increase was 1 mm. The annual rainfall in Wudaoliang increased the fastest. The observation data from the three meteorological stations reveal climate changes in the permafrost sections of the Qinghai-Tibet Engineering Corridor. Judging from the overall trend of temperature and rainfall changes, the temperature in the northern and central parts of the corridor has increased rapidly over the past 50 years, exceeding the global average of 0.02 °C/a (IPCC). The rainfall increase in the northern part of the corridor is also obvious, especially the rate of rainfall increase at the Wudaoliang meteorological station. Increases in both temperature and rainfall have a great impact on accelerating the spatial variation in permafrost, and they are the leading cause of permafrost degradation on the Tibetan Plateau.

    2019-09-12 0 9 View Details

  • The water level observation of lakes on the Tibetan Plateau (2010-2017)

    The water level observation data set of lakes on the Tibetan Plateau contains the daily variations of water levels for three lakes: Zhari Namco, Bamco and Dawaco. The lake water level was obtained by a HOBO water level gauge (U20-001-01) installed on the lakeshore, then corrected using the barometer installed on the shore or pressure data of nearby weather stations, and then the real water level changes were obtained. The accuracy was less than 0.5 cm. The items of this data set are as follows: Daily variation data of water level in Zhari Namco from 2009 to 2014; Daily variation data of water level in Bamco from 2013 to 2014; Daily variation data of water level in Dawaco from 2013 to 2014. Water level, unit: m.

    2019-09-11 0 13 View Details

  • Meteorological observation data of Kunsha Glacier (2015-2017)

    This data set includes the temperature, precipitation, relative humidity, wind speed, wind direction and other daily values in the observation point of Kunsha Glacier. The data is observed from October 3, 2015 to September 19, 2017. It is measured by automatic meteorological station (Onset Company) and a piece of data is recorded every 2 hours. The original data forms a continuous time series after quality control, and the daily mean index data is obtained through calculation. The original data meets the accuracy requirements of China Meteorological Administration (CMA) and the World Meteorological Organization (WMO) for meteorological observation. Quality control includes eliminating the systematic error caused by the missing point data and sensor failure. The data is stored as an excel file.

    2019-09-11 0 0 View Details

  • Geocryological regionalization and classification map of the frozen soil in China (1:10,000,000) (2000)

    These data are digitized for the Geocryological Regionalization and Classification Map of the Frozen Soil in China (1:10 million) (Guoqing Qiu et al., 2000; Youwu Zhou et al., 2000), adopting a geocryological regionalization and classification dual series system. The geocryological regionalization system and classification system are used on the same map to reflect the commonality and individuality of the formation and distribution of frozen soil at each level. The geocryological regionalization system consists of three regions of frozen soil: (1) the frozen soil region of eastern China; (2) the frozen soil region of northwestern China; and (3) the frozen soil region of southwestern China (Tibetan Plateau). Based on the three large regions, 16 regions and several subregions are further divided. In the division of the geocryological boundary in the frozen soil area, the boundary between major regions I and III mainly consults the results of Bingyuan Li (1987). The boundary between major regions II and III is the northern boundary of the Tibetan Plateau, which is the Kunlun Mountains-Altun Mountains-Northern Qilian Mountains and the piedmont line. The boundary between major regions I and II is in the area of Helan Mountain-Langshan Mountain. The boundary of the secondary region is divided by the geomorphological conditions in regions II and III. However, in region I, it is mainly divided by the ratio of the annual temperature range A to the annual mean temperature T, and the frozen depths of various regions are taken into consideration. The classification system is divided into 8 types based on the continuity of frozen soil, the time of existence of frozen soil and the seasonal frozen depth. The various classifications of boundaries are mainly taken from the "Map of Snow, Ice and Frozen Ground in China" (1:4 million) (Yafeng Shi et al., 1988) and consult some new materials, whereas the seasonal frozen soil boundary is mainly based on the weather station data. The definitions of each classification are as follows: (1) Large permafrost: the continuous coefficient is 90%-70%; (2) Large-island permafrost: the continuous coefficient is 70%-30%; (3) Sparse island-shaped permafrost: the continuous coefficient is <30%; (4) Permafrost in the mountains; (5) Medium-season seasonal frozen soil: the maximum seasonal frozen depth that can be reached is >1 m; (6) Shallow seasonal frozen soil: the maximum seasonal frozen depth that can be reached is <1 m; (7) Short-term frozen soil: less than one month of storage time; and (8) Nonfrozen soil. According to the data, China's permafrost areas sum to approximately 2.19 × 106 km², accounting for 22.83% of China's territory. Among those areas, the mountain permafrost is found over 0.42×106 km2, which is 4.39% of the territory of China. The seasonal frozen soil area is approximately 4.76×106 km², accounting for 49.6% of China's territory, and the instantaneous frozen soil area is approximately 1.86×106 km², i.e., 19.33% of China's territory. For more information, please see the references (Youwu Zhou et al., 2000).

    2019-09-11 0 7 View Details

  • The stable oxygen isotope data of daily precipitation in Lulang, Nuxia, and Guangzhou (2007-2014)

    This data set contains stable oxygen isotope data of daily precipitation in Lulang, Nuxia, and Guangzhou from 2007 to 2014. The precipitation data of the Lulang station are obtained via automatic weather station (AWS) rain gauges, and the precipitation data for Guangzhou and Nuxia are the manual records of meteorological or hydrological stations. Project source of the data: the general project of the National Natural Science Foundation of China “Exploring the impact of ENSO on the source of water vapor in the north and south of the ‘third pole' through stable isotope of precipitation and ice core” (41571074). Data processing related information can be found in the following reference: Yang, X, Mary E. Davis, Sunil Acharya, Tandong Yao. Asian Monsoon variations revealed from stable isotopes in precipitation. Climate Dynamics, 2017, doi:10.1007/s00382-017-4011 -4. Data collection sites: Lulang Station of Southeast Tibet, Chinese Academy of Sciences, Longitude: 94.73°E; Latitude: 29.77°N; Altitude: 3330 m. Guangzhou weather station, longitude: 113.32 °E; latitude: 23.13 ° N; altitude: 7 meters. Nuxia hydrological station, longitude: 94.65 °E; latitude: 29.47 ° N; elevation: 2920 m.

    2019-09-11 0 2 View Details

  • The representative sequence dataset of surface temperature in the Tibetan Plateau (1951-2006)

    This data set contains the temperature anomaly series for each quarter and month of the years from January, 1951 to December, 2006 on the Tibetan Plateau. Based on the “China Homogenized Historical Temperature Data Set (1951–2004) Version 1.0” and the daily average temperature data from 2005 to 2006, the monthly average temperature of 123 sites on the Tibetan Plateau and its neighboring areas were gridded using the Climate Anomaly Method (CAM). Further, the average monthly temperature anomaly sequences from 1951 to 2006 were established using the area weighting factor method. To maximize the use of the observation data, the method using the data at a nearby reference station to correct the short series of the climatic standard values of the air temperature data is emphatically discussed. Reference: Yu Ren, Xueqin Zhang, Lili Peng. Construction and Analysis of Mean Air Temperature Anomaly Series for the Qinghai-Xizang Plateau during 1951-2006. Plateau Meteorology, 2010. The “China Homogenized Historical Temperature Data Set (1951–2004) Version 1.0” and the daily average temperature data from 2005 to 2006 meet the relevant national standards. There are five fields in the monthly temperature anomaly data table. Field 1: Year Field 2: Month Field 3: Number of grids Number of grids included in the calculation Field 4: Number of sites Number of sites included in the calculation Field 5: Monthly Temperature Anomaly Unit °C There are five fields in the year and quarter temperature anomaly data table. Field 1: Year Field 2: Quarter Field 3: Number of grids Number of grids included in the calculation Field 4: Number of sites Explanation: Number of sites included in the calculation Field 5: Temperature anomaly °C In the quarter field: 1. If it is null, it is the annual temperature anomaly 2. DJF: Winter (Last December to this February) temperature anomaly °C 3. MAM: Spring (March-May) temperature anomaly °C 4. JJA: Summer (June-August) temperature anomaly °C 5. SON: Fall (September-November) temperature anomaly °C Data accuracy: the monthly average temperature anomaly to the third decimal places, the annual and quarterly average temperature anomaly to the second decimal places.

    2019-09-11 0 6 View Details

  • Meteorological observation dataset of Shiquan River Source (2012-2015)

    This dataset includes the temperature, precipitation, relative humidity, wind speed, wind direction and other daily values in the observation point of Shiquan River Source. The data is observed from July 2, 2012 to August 5, 2014, and from September 30, 2015 to December 25, 2015. It is measured by automatic meteorological station (Onset Company) and a piece of data is recorded every 2 hours. The original data forms a continuous time series after quality control, and the daily mean index data is obtained through calculation. The original data meets the accuracy requirements of China Meteorological Administration (CMA) and the World Meteorological Organization (WMO) for meteorological observation. Quality control includes eliminating the systematic error caused by the missing point data and sensor failure. The data is stored as an excel file.

    2019-09-11 0 0 View Details

  • Meteorologic elements dataset of XDT on Qinghai-Tibet Plateau (2014-2018)

    This dataset is Meteorologic Elements Dataset of XDT on Qinghai-Tibet Plateau 2014-2018. Meteorologic elements including: 2m air temperature(℃), 2m air humidity(%), precipitation(mm), 2m wind speed(m/s), global radiation(w/㎡). The data are from the XiDaTan monitoring site(site code: XDTMS) of Cryosphere Research Station on Qinghai-Tibat Plateau, Chinese Academy of Sciences(CRS-CAS). These daily data was calculated from the original monitoring data(monitoring frequency is 30min). The missing part of the daily data was marked by NAN, which were manually collated and verified. The missing period was from 2017-7-7 to 2017-10-3.

    2019-09-11 0 7 View Details

  • The receiver function data of the Southern Station of the ANTILOPE-1 Array (2006-2007)

    The data set mainly includes P-wave and S-wave receiver functions calculated from the waveform data collected at the southern station of the ANTILOPE-1 array, which is located in the western part of the Tibetan Plateau. This array was established by the Antelope Project of the International Lithosphere Exploration Research Program in the Tibetan Plateau. The pulse deconvolution method was applied to the time domain to calculate the receiver function. All of the receiver function data were visually inspected to remove low-quality records that were significantly different from the majority of the receiver functions. The data set was compressed into a zip format file containing two folders: ANTILOPE-1-PRF and ANTILOPE-1-SRF, where PRF and SRF represent the P-wave receiver function and the S-wave receiver function, respectively. All P-wave and S-wave receiver function data were placed in the corresponding folders. The data are mainly used to investigate the lithospheric structure and reveal the deep dynamics of plateau uplift.

    2019-09-11 0 6 View Details

  • The observation dataset of the Muztagh Ata hydrological station (2013-2017)

    The observation data set of the Muztagh Ata hydrological station recorded the water level data of Lake Karakuri and Qiaodumake in the Muztag Ata area, and the ice condition and water quality data of Lake Karakuri (e.g., water temperature, pH, dissolved oxygen, redox potential, and conductivity). The ice condition data were manually measured, including observational data from November 30,2013, to March 26, 2016, which recorded the observational data for each week during December to the next March from 2013 to 2015 (the data collection period sometimes would change due to weather and other reasons); water quality parameter was measured using Hydrolab DS5, including measured data on 2013-07-20, 2014-07-15, 2014-08-28, 2014-09-14, 2015-07-11, and 2015-09-18; water level data were automatically measured by HOBO water level collector, and they included daily measurement records of Lake Karakuri from July 1, 2013, to October 13, 2015, and Qiaodumake from June 3,2013, to September 2, 2015. The data were collected digitally and automatically, and the data set was processed by forming a continuous time sequence after quality controlling the raw data. Observation and collection of the data were performed in strict accordance with the instrument operating specifications. Some obvious error data were removed, and missing data were represented by spaces. Qiaodumake water level collection location: E 75°00.149′, N 38°17.375′, 4130 m Lake Karakuri measuring point location: E 75°02.286′, N 38°26.209′, 3650 m Water level data: Time, Water level, unit: cm Ice condition data: Time, Ice thickness, unit: cm Water quality data: Time, Depth, unit: m Temperature, unit: °C PH, unit: pH Redox potential, unit: mV Photon flux density, unit: μmol/(m2 s) Dissolved oxygen, unit: mg/l

    2019-09-11 0 7 View Details

  • Meteorological observation data from the integrated observation and research station of the alpine environment in Southeast Tibet (2007-2016)

    This data set includes daily average data of atmospheric temperature, relative humidity, precipitation, wind speed, wind direction, net radiance, and atmospheric pressure from 1 January 2007 to 31 December 2016 derived from the Integrated Observation and Research Station of the Alpine Environment in Southeast Tibet. The data set has been used by students and researchers in the fields of meteorology, atmospheric environment and ecological research. The units of the various meteorological elements are as follows: temperature °C; precipitation mm; relative humidity %; wind speed m/s; wind direction °; net radiance W/m2; pressure hPa; and particulate matter with aerodynamic diameter less than 2.5 μm μg/m3. All the data are the daily averages calculated from the raw observations. Observations and data collection were carried out in strict accordance with the instrument operating specifications and the guidelines published in relevant academic journals; data with obvious errors were eliminated during processing, and null values were used to represent the missing data. In 2015, due to issues related to the age of the observation probe at the station, only the wind speed data for the last 8 months were retained.

    2019-09-11 0 20 View Details