Observational datasets of Pan-Third Pole

Brief Introduction: The high-cold regions in China include the Qinghai Tibetan Plateau, and the alpine regions of Gansu, Inner Mongolia and Xinjiang, with a total area of about 2.9 million square kilometers. Due to the complexity of topography and geomorphology, the worldwide researches more and more focus on the surface processes of the Qinghai Tibetan Plateau and its adjacent areas. The High-cold Region Observation and Research Network for Land Surface Processes & Environment of China (HORN) has gradually formed. It integrates 17 stations of Chinese Academy of Sciences, for long term observations and researches of land surface processes, including glaciers, permafrost, lades, alpine ecosystem in the high-cold regions of China. It provides a platform support for integrated researches of earth system, through condensation of scientific problems, integration of monitoring resources, improvement of observation capability and level, long-term continuous monitoring of surface processes and environmental changes in cold regions. It also provides data support for revealing the law of climate change and water resources formation and transformation in the headwaters of big rivers, exploring the changes of ecosystem structure and service function, grasping the mechanism of natural disasters such as ice and snow freezing and thawing, and promoting the sustainable development of regional economy and society, etc. A network integrated center is set up to organize research and carry out the specific implementation of network construction. It consists of an office, an observation technology service group and a data integration management group. The participating units of HORN should sign construction/research contracts in order to implement contract-based management, perform all tasks in the contracts and accept the examination and acceptance of the network organization. The network construction should give priority to scientific research, coordinated development, relatively balanced allocation of infrastructure and observation instruments, and free sharing of data within the network. For the principle of sharing and opening, the observatories of the network are open to the whole country. The network cooperates with relevant units through consultation, agreement or contract according to specific tasks and costs; the original observation data are gradually shared based on the principle of first the network, then the department and then the society. The network carries out planned and coordinated cooperation with foreign scientific research institutions and universities, which can improve the level of network observation and expand the content of observation through the cooperation. The HORN is managed by the Chinese Academy of Sciences in the allocation of funds and resources.

Number of Datasets: 71

  • The fundamental database of atmospheric boundary layer of the north Tibetan Plateau (1997-2008)

    The fundamental database of atmospheric boundary layer of the north Tibetan Plateau (1997-2008)

    The data set collected long-term monitoring projects from multiple stations for atmosphere, hydrology and soil in the North Tibetan Plateau. The data set consisted of monitoring data obtained from the automatic weather station (AWS) and the atmospheric boundary layer tower (PBL) in the field. The sensors for temperature, humidity and pressure were provided by Vaisala of Finland; the sensors for wind speed and direction were provided by Met One of America, the radiation sensors were provided by APPLEY of America and EKO of Japan; the gas analyzers were provided by Licor of America; the soil water content instrument, ultrasonic anemometers and data collectors were provided by CAMPBELL of America. The observation system was maintained by professionals regularly (2-3 times a year), the sensors were calibrated and replaced, and the collected data were downloaded and reorganized. The data set was processed by forming a time continuous sequence after the raw data were quality-controlled. It met the accuracy level of the original meteorological observation data of the National Weather Service and the World Meteorological Organization (WMO). The quality control included the elimination of the missing data and the systematic error caused by the failure of the sensor.

    2019-09-15 710 17 View Details

  • Qilian Mountains integrated observatory network: Dataset of Qinghai Lake integrated observatory network (an observation system of meteorological elements gradient of Yulei station on Qinghai lake, 2018)

    Qilian Mountains integrated observatory network: Dataset of Qinghai Lake integrated observatory network (an observation system of meteorological elements gradient of Yulei station on Qinghai lake, 2018)

    This dataset includes data recorded by the Qinghai Lake integrated observatory network obtained from an observation system of Meteorological elements gradient of Yulei station on Qinghai lake from January 1 to October 12, 2018. The site (100° 29' 59.726'' E, 36° 35' 27.337'' N) was located on the Yulei Platform in Erlangjian scenic area, Qinghai Province. The elevation is 3209m. The installation heights and orientations of different sensors and measured quantities were as follows: air temperature and humidity profile (HMP155; 12 and 12.5 m above the water surface, towards north), wind speed and direction profile (windsonic; 14 m above the water surface, towards north) , rain gauge (TE525M; 10m above the water surface in the eastern part of the Yulei platform ), four-component radiometer (NR01; 10 m above the water surface, towards south), one infrared temperature sensors (SI-111; 10 m above the water surface, towards south, vertically downward), photosynthetically active radiation (LI190SB; 10 m above the water surface, towards south), water temperature profile (109, -0.2, -0.5, -1.0, -2.0, and -3.0 m). The observations included the following: air temperature and humidity (Ta_12 m, Ta_12.5 m; RH_12 m, RH_12.5 m) (℃ and %, respectively), wind speed (Ws_14 m) (m/s), wind direction (WD_14 m) (°) , precipitation (rain) (mm), four-component radiation (DR, incoming shortwave radiation; UR, outgoing shortwave radiation; DLR_Cor, incoming longwave radiation; ULR_Cor, outgoing longwave radiation; Rn, net radiation) (W/m^2), infrared temperature (IRT_1) (℃), photosynthetically active radiation (PAR) (μmol/ (s m-2)), water temperature (Tw_20cm、Tw_50cm、Tw_100cm、Tw_200cm、Tw_300cm) (℃). The data processing and quality control steps were as follows: (1) The AWS data were averaged over intervals of 10 min for a total of 144 records per day. The other data in addition to the four-component radiation data during January 1 to October 12 were missing because the malfunction of datalogger. The missing data were denoted by -6999. (2) Data in duplicate records were rejected. (3) Unphysical data were rejected. (4) The data marked in red are problematic data. (5) The format of the date and time was unified, and the date and time were collected in the same column, for example, date and time: 2018-1-1 10:30. Moreover, suspicious data were marked in red.

    2019-09-15 1377 36 View Details

  • The observation dataset of glacial hydrological stations in the Namco Basin (2006-2008)

    The observation dataset of glacial hydrological stations in the Namco Basin (2006-2008)

    This data set comprises the observed runoff data of the glacial hydrological stations in the Namco Basin in Tibet from 2006 to 2008. It contains monthly mean runoff data from four regions: the Niyaqu river, Qugaqie river, Zhadang river, and Angqu river. The data were used to study the regional hydrology and water resources. Measurement instrument: propeller flow velocity meter (LS1206B), Hobo water level meter. Spatial location: Niyaqu, East Namco (the road near the lake outlet): 90.2969E, 31.0342N, elevation: 4730 m; Qugaqie, South Namco (road into the lake outlet): 90.6361E, 30.8175N, elevation: 4780 m; End of the Zhadang Glacier: 90.7261E, 30.6878N, elevation: 5400 m; Angqu (bridge near Deqing Town): 90.2839E, 30.6525N, elevation: 4780 m.

    2019-09-14 881 18 View Details

  • The concentration dataset of persistent organic pollutants in the atmosphere, lake water and fish bodies in Namco (2012-2014)

    The concentration dataset of persistent organic pollutants in the atmosphere, lake water and fish bodies in Namco (2012-2014)

    The concentration data set of persistent organic pollutants in the atmosphere, lake water and fish bodies in Namco from 2012 to 2014 includes concentration time series of atmospheric gaseous organochlorine pesticides (OCPs) and polychlorinated biphenyls (PCBs), atmospheric gaseous polycyclic aromatic hydrocarbons (PAHs), atmospheric particulate PAHs, dissolved persistent organic pollutants (POPs) in lake water, POPs in suspended particles of lake water and POPs in bodies of Gymnocypris namensis. The contents of the data set are all measured data. (1) The atmospheric samples were collected from the Integrated Observation and Research Station of Multisphere in Namco by the atmospheric active sampler. The flow rate of the sampler is 60 L min-1, which collects data every other day. One sample is generated every half month, and the sampling volume is approximately 600 m³. Each sample includes a glass fiber filter (GFF, 0.45 μm, Whatman) that adsorbs particulate POPs and a polyurethane foam (PUF, 7.5 x 6 cm) that collects gaseous POPs. (2) Fifteen sampling points were selected along Namco to collect surface lake water samples at a water depth of 0-1 m and with a volume of 200 L. The total suspended particulates are obtained by filtering the water samples with a 0.7 μm GFF membrane, and then the dissolved POPs in the water are collected using a solid phase extraction column packed with XAD-2. (3) Gymnocypris namensis is the most widely distributed fish in Namco. A total of 35 samples of different sizes were collected, and the concentration of POPs in the back muscle samples was analyzed. Each medium sample was prepared and analyzed by the Key Laboratory of Tibetan Environment Changes and Land Surface Processes of CAS. The sample preparation steps include Soxhlet extraction, silica-alumina column purification, removal of macromolecular impurities by a GPC column, concentration and constant volume. The analytical test instrument was a gas chromatography-mass spectrometer (GC-MS, Finnigan-Trace GC/PolarisQ) manufactured by American Thermoelectric Corporation. The column separating OCPs and PCBs was a CP-Sil 8CB capillary column (50 m × 0.25 mm × 0.25 μm), and the column separating PAHs was a DB-5MS capillary column (60 m × 0.25 mm × 0.25 μm). Sampling and laboratory analysis procedures followed strict quality control measures with lab blanks and field blanks. The detection limit of the compound is the average of the concentration of the corresponding compound in the field blank plus 3 times the standard deviation; if the compound is not detected in the field blank, the signal-to-noise ratio, 10 times the lowest concentration of the working curve, will be considered as the detection limit. Data below the detection limit are considered undetected and labeled as BDL; data marked in italics are detected by 1/2 times the detection limit. The recovery of PAHs is between 65% and 92%, the recovery of OCPs is between 64% and 112%, and the sample concentration is not corrected using recovery.

    2019-09-14 751 3 View Details

  • Central Asian meteorological station observation dataset (2017-2018)

    Central Asian meteorological station observation dataset (2017-2018)

    Central Asian meteorological station observation data set includes field observation data of temperature, precipitation, wind direction and speed, relative humidity, air pressure, radiation, soil heat flux, sunshine time and soil temperature at 10 field weather stations in central Asia. The 10 field stations cover different ecosystem types such as farmland, forest, grassland, desert, desert, wetland, plateau and mountain. The original meteorological data collected by the ground meteorological observation stations in this data set are obtained after format conversion after screening and auditing. The data quality is good. Various types of climate in the Middle East, fragile ecological environment, the frequent meteorological disasters, the establishment of the data set for long-term ecological environment monitoring, disaster prevention and mitigation in central Asia, central Asia, climate change and ecological environment in the areas of study provides data support, ecological environment monitoring in central Asia has been obtained in the study of the application.

    2019-09-14 732 22 View Details

  • Atmospheric heat source/sink dataset over the Tibetan Plateau based on satellite and routine meteorological observations (1984-2015)

    Atmospheric heat source/sink dataset over the Tibetan Plateau based on satellite and routine meteorological observations (1984-2015)

    The Tibetan Plateau (TP), acting as a large elevated land surface and atmospheric heat source during spring and summer, has a substantial impact on regional and global weather and climate. To explore the multi-scale temporal variation in the thermal forcing effect of the TP,The data set of atmospheric heat source/sink in Tibetan Plateau was prepared as a quantitative analysis tool for calculating heat budget of gas column. the atmospheric heat source/sink dataset consists of three variables: surface sensible heat flux SH, latent heat release LH and net radiation flux RC. here we calculated the surface sensible heat and latent heat release based on 6-h routine observations at 80 (32) meteorological stations during the period 1979–2016:air temperature at 1.5 m and surface temperature and wind speed at 10 m are used to calculate surface sensible heat flux,the latent heat release is estimated precipitation data.The satellite datasets used to calculate the net radiation flux were the Global Energy and Water Cycle Experiment surface radiation budget satellite radiation(GEWEX/SRB) and Clouds and Earth’s Radiant Energy Systems/Energy Balanced And Filled (CERES/EBAF). The monthly shortwave and longwave radiation fluxes at the surface and at the top of the atmosphere (TOA) in GEWEX/SRB and CERES/EBAF were utilized to obtain the net radiation flux for the period 1984–2015 via statistical methods。

    2019-09-14 1671 30 View Details

  • Meteorological observation data from Qomolangma station for atmospheric and environmental observation and research (2005-2016)

    Meteorological observation data from Qomolangma station for atmospheric and environmental observation and research (2005-2016)

    This data set includes the daily averages of the temperature, pressure, relative humidity, wind speed, precipitation, global radiation, P2.5 concentration and other meteorological elements observed by the Qomolangma Station for Atmospheric and Environmental Observation and Research from 2005 to 2016. The data are aimed to provide service for students and researchers engaged in meteorological research on the Tibetan Plateau. The precipitation data are observed by artificial rainfall barrel, the evaporation data are observed by Φ20 mm evaporating pan, and all the others are daily averages and ten-day means obtained after half hour observational data are processed. All the data are observed and collected in strict accordance with the Equipment Operating Specifications, and some obvious error data are eliminated when processing the generated data.

    2019-09-14 1074 31 View Details

  • The meteorological data of Mt. Qomolangma, Namco, and Linzhi Stations on the Tibetan Plateau (2006-2008)

    The meteorological data of Mt. Qomolangma, Namco, and Linzhi Stations on the Tibetan Plateau (2006-2008)

    The data set collects the long-term monitoring data on atmosphere, hydrology and soil from the Integrated Observation and Research Station of Multisphere in Namco, the Integrated Observation and Research Station of Atmosphere and Environment in Mt. Qomolangma, and the Integrated Observation and Research Station of the Alpine Environment in Southeast Tibet. The data have three resolutions, which include 0.1 seconds, 10 minutes, 30 minutes, and 24 hours. The temperature, humidity and pressure sensors used in the field atmospheric boundary layer tower (PBL) were provided by Vaisala of Finland. The wind speed and direction sensor was provided by MetOne of the United States. The radiation sensor was provided by APPLEY of the United States and EKO of Japan. Gas analysis instrument was provided by Licor of the United States, and the soil moisture content, ultrasonic anemometer and data collector were provided by CAMPBELL of the United States. The observing system is maintained by professionals on a regular basis (2-3 times a year), the sensors are calibrated and replaced, and the collected data are downloaded and reorganized to meet the meteorological observation specifications of the National Weather Service and the World Meteorological Organization (WMO). The data set was processed by forming a time continuous sequence after the raw data were quality-controlled, and the quality control included eliminating the systematic error caused by missing data and sensor failure.

    2019-09-14 1105 29 View Details

  • Observation dataset of the hydrologic station on the Rongbu River glacier of mount everest (2010)

    Observation dataset of the hydrologic station on the Rongbu River glacier of mount everest (2010)

    This is the flow data set observed in 2010 by the glacier hydrological station in the upper reaches of the Rongbu River on Mount Everest, Tibet. The measured section position is 28º22'03''N, 86º56'53' 'E, with an altitude of 4290 meters. It is measured by an LS20B propeller-type current meter by the one-point method. All the data were observed and collected in strict accordance with the Equipment Operating Specifications.

    2019-09-14 698 13 View Details

  • Dataset of black carbon concentration at Mt. Everest Station from May 2015 to May 2017

    Dataset of black carbon concentration at Mt. Everest Station from May 2015 to May 2017

    Black carbon(BC) is a carbonaceous aerosol that mainly emitted from the incomplete combustion of fossil fuels or biomass. As fine particles in the atmosphere with light-absorbing characteristic, BC can significantly reduce the surface albedo when deposits on snow and ice and accelerate the melting of glaciers and snow cover. New Aethalometer model AE-33 acquires the real-time BC concentration according to the light absorption and attenuation characteristics from the different wavelengths. In addition, AE-33 uses dual-spot measurements, which can compensate for the “spot loading effect” and obtain high-quality BC concentrations. By using the real-time observation data measured by AE-33 at Mt. Everest Station, we analyzed the seasonal and diurnal variations of BC and its sources and transport processes, and we also investigated the transport mechanisms of serious polluted episodes. That can provide basis for future works on assessment of climate effects caused by BC in this region.

    2019-09-13 471 8 View Details

  • Meteorological observation data in an alpine steppe site of Shenzha Station (2015-018)

    Meteorological observation data in an alpine steppe site of Shenzha Station (2015-018)

    (1)This data set provides atmospheric temperature (2 meters above land surface), vapor content, precipitation, press, wind velocity and solar radiation (since 2015). (2)All data were generated using AWS (auto weather station), and been calculated their daily average. (3)All data are presented here are raw data, after being evaluated regarding their quality. (4)This data set could be used in background description for related studies.

    2019-09-13 489 19 View Details

  • Yulong snow mountain glacier No.1, 4800 m altitude the daily average meteorological observation dataset (2014-2018)

    Yulong snow mountain glacier No.1, 4800 m altitude the daily average meteorological observation dataset (2014-2018)

    1.The data content: air temperature, relative humidity, precipitation, air pressure, wind speed, the average daily data of total radiation, the total net radiation and vapor pressure. 2. Data sources and processing methods: campel mountain type automatic meteorological station observation by the United States, including air temperature and humidity sensor model HMP155A;Wind speed and direction finder models: 05103-45;Net radiation instrument: CNR four radiometer component;The atmospheric pressure sensor: CS106;The measuring cylinder: TE525MM.Automatic meteorological station every ten minutes automatic acquisition data, after complete automatic acquisition daily meteorological data then daily mean value were calculated statistics. 3.Data quality description: automatic continuous access to data. 4.Data application results and prospects: the weather set in upper glaciers, meteorological data provide data support for snow - runoff model simulation, and provides data for the glacier dynamics model and simulation.

    2019-09-13 441 6 View Details

  • Observation dataset of forest ecosystems on the eastern margin of the Tibet Plateau (2005-2008)

    Observation dataset of forest ecosystems on the eastern margin of the Tibet Plateau (2005-2008)

    These are the meteorological, soil, vegetation and other data observed by the Gongga Mountain Forest Ecosystem Test Station on the eastern margin of the Tibetan plateau, primarily from 2005 to 2008. Meteorological data: temperature, air pressure, relative humidity, dew point temperature, water pressure, ground temperature, soil temperature (5 cm, 10 cm, 20 cm, and 40 cm), 10-minute average wind, 10-minute maximum wind speed, precipitation, total radiation, net radiation. Tree layer biological observation data: diameter at breast height, tree height, life form Shrub layer biological observation data: tree number, height, coverage, life form, aboveground biomass, underground biomass Herb layer biological observation data: tree (strain) number, average height, coverage, life type, aboveground biomass, underground biomass Leaf area index: tree layer leaf area index, shrub layer leaf area index, grass layer leaf area index Soil organic matter and nutrients: soil organic matter, total nitrogen, total phosphorus, total potassium, nitrate nitrogen, ammonium nitrogen, available nitrogen (alkali-hydrolysable nitrogen), available phosphorus, available potassium, slowly available potassium, PH value in aqueous solution Soil water content: depth, water content

    2019-09-13 1199 37 View Details

  • Meteorological observation data from the integrated observation and research station of multiple spheres in Namco (2005-2016)

    Meteorological observation data from the integrated observation and research station of multiple spheres in Namco (2005-2016)

    This data set contains the daily values of temperature, air pressure, relative humidity, wind speed, precipitation, and total radiation observed at the Namco station from 1 October 2005 to 31 December 2016. The data set was processed as a continuous time series after the original data were quality controlled. After the systematic error caused by missing data points and sensor failure was eliminated, the data set reaches the accuracy of raw meteorological observation data required by the National Weather Service and the World Meteorological Organization (WMO). The data can provide information for professionals engaged in scientific research and training related to atmospheric physics, atmospheric environment, climate, glaciers, frozen soils and other disciplines. This data set has mainly been applied in the fields of glaciology, climatology, environmental change, cold zone hydrological processes, frozen soil science, etc. The measured parameters had the following units and accuracies: Air temperature, unit: °C, accuracy: 0.1 °C; air relative humidity, unit: %, accuracy: 0.1%; wind speed, unit: m/s, accuracy: 0.1 m/s; wind direction, unit: °, accuracy: 0.1 °; air pressure, unit: hPa, accuracy: 0.1 hPa; precipitation, unit: mm, accuracy: 0.1 mm; total radiation, unit: W/m2, accuracy: 0.1 W/m2.

    2019-09-12 1074 35 View Details

  • The meteorological observation data of the Xiying River on the east section of the Qilian Mountains (2006-2010)

    The meteorological observation data of the Xiying River on the east section of the Qilian Mountains (2006-2010)

    This data set contains meteorological observation data from three meteorological stations in the Shandong section of the Qilian Mountains (Xiying Reservoir [XYSCZ], Forest Protection Station [XYHLZ] and Shangchigou [XYSCG]), including temperature, precipitation, relative humidity, wind speed, main wind direction, total radiation and air pressure, and the temporal resolution is one day. The raw data were observed and collected in strict accordance with the instrument operating specifications. The accuracy of the data meets the requirements of the National Meteorological Administration and the World Meteorological Organization (WMO) for meteorological observation data. The observation system is maintained by professionals 2-3 times a year, during which the sensor is calibrated or replaced and the collected data are downloaded and reorganized. The data are the continuous sequence generated by quality controlling the raw data, and some obvious systematic error data caused by missing points and sensor failure are eliminated.

    2019-09-12 653 18 View Details

  • Qilian Mountains integrated observatory network: Cold and Arid Research Network of Lanzhou university (an observation system of Meteorological elements gradient of Guazhou Station, 2018)

    Qilian Mountains integrated observatory network: Cold and Arid Research Network of Lanzhou university (an observation system of Meteorological elements gradient of Guazhou Station, 2018)

    This dataset includes data recorded by the Cold and Arid Research Network of Lanzhou university obtained from an observation system of Meteorological elements gradient of Guazhou Station from September 23 to December 31, 2018. The site (95.673E, 41.405N) was located on a desert in the Liuyuan Guazhou, which is near Jiuquan city, Gansu Province. The elevation is 2016 m. The installation heights and orientations of different sensors and measured quantities were as follows: air temperature and humidity profile (2, 4, 8, 16, 32, and 48 m, towards north), wind speed and direction profile (windsonic; 2, 4, 8, 16, 32, and 48 m, towards north), air pressure (1.5 m), rain gauge (4 m), infrared temperature sensors (4 m, towards south, vertically downward), photosynthetically active radiation (4 m, towards south), soil heat flux (-0.05 m and -0.1m in south of tower), soil soil temperature/ moisture/ electrical conductivity profile -0.05, -0.1m, -0.2m, -0.4m, -0.6m and -0.8m in south of tower), four-component radiometer (4 m, towards south), sunshine duration sensor(4 m, towards south). The observations included the following: air temperature and humidity (Ta_2 m, Ta_4 m, Ta_8 m, Ta_16 m, Ta_32 m, and Ta_48 m; RH_2 m, RH_4 m, RH_8 m, RH_16 m, RH_32 m, and RH_48 m) (℃ and %, respectively), wind speed (Ws_2 m, Ws_4 m, Ws_8 m, Ws_16 m, Ws_32 m, and Ws_48 m) (m/s), wind direction (WD_2 m, WD_4 m, WD_8 m, WD_16 m, WD_32 m, and WD_48 m) (°), air pressure (press) (hpa), precipitation (rain) (mm), four-component radiation (DR, incoming shortwave radiation; UR, outgoing shortwave radiation; DLR_Cor, incoming longwave radiation; ULR_Cor, outgoing longwave radiation; Rn, net radiation) (W/m^2), infrared temperature (IRT) (℃), photosynthetically active radiation (PAR) (μmol/ (s m^2)), soil heat flux (Gs_0.05m, Gs_0.1m) (W/m^2), soil temperature (Ts_5 cm, Ts_10 cm, Ts_20 cm, Ts_40 cm, Ts_60 cm, and Ts_80 cm) (℃), soil moisture (Ms_5 cm, Ms_10 cm, Ms_20 cm, Ms_40 cm, Ms_60 cm, and Ms_80 cm) (%, volumetric water content),soil water potential (SWP_5cm, SWP_10cm, SWP_20cm, SWP_40cm, SWP_60cm, and SWP_80cm)(kpa), soil conductivity (Ec_5cm, Ec_10cm, Ec_20cm, Ec_40cm, Ec_60cm, and Ec_80cm)(μs/cm), sun time (h). The data processing and quality control steps were as follows: (1) The AWS data were averaged over intervals of 10 min for a total of 144 records per day. The soil water potential in the area is so low that it has exceeded the sensor measurements. (2) Data in duplicate records were rejected. (3) Unphysical data were rejected. (4) The data marked in red are problematic data. (5) The format of the date and time was unified, and the date and time were collected in the same column, for example, date and time: 2018-6-10 10:30.

    2019-09-12 1046 30 View Details

  • Qilian Mountains integrated observatory network: cold and arid research network of Lanzhou university (eddy covariance system of Guazhou station, 2018)

    Qilian Mountains integrated observatory network: cold and arid research network of Lanzhou university (eddy covariance system of Guazhou station, 2018)

    This dataset contains the flux measurements from the Guazhou station eddy covariance system (EC) in the middle reaches of the Heihe integrated observatory network from September 24 to December 31 in 2018. The site (95.673E, 41.405N) was located in a desert in Liuyuan Guazhou, which is near Jiuquan city in Gansu Province. The elevation is 2016 m. The EC was installed at a height of 4.0 m, and the sampling rate was 10 Hz. The sonic anemometer faced north, and the separation distance between the sonic anemometer and the CO2/H2O gas analyzer (CSAT3&Li7500A) was 0.17 m. The raw data acquired at 10 Hz were processed using the Eddypro post-processing software, including the spike detection, lag correction of H2O/CO2 relative to the vertical wind component, sonic virtual temperature correction, coordinate rotation (2-D rotation), corrections for density fluctuation (Webb-Pearman-Leuning correction), and frequency response correction. The EC data were subsequently averaged over 30 min periods. The observation data quality was divided into three classes according to the quality assessment method of stationarity (Δst) and the integral turbulent characteristics test (ITC): class 1-3 (high quality), class 4-6 (good), class 7-8 (poor, better than gap filling data), class9 (rejected). In addition to the above processing steps, the half-hourly flux data were screened in a four-step procedure: (1) data from periods of sensor malfunction were rejected; (2) data collected before or after 1 h of precipitation were rejected; (3) incomplete 30 min data were rejected when the missing data constituted more than 3% of the 30 min raw record; and (4) data were rejected at night when the friction velocity (u*) was less than 0.1 m/s. There were 48 records per day, and the missing data were replaced with -6999. Suspicious data were marked in red. The released data contained the following variables: data/time, wind direction (Wdir, °), wind speed (Wnd, m/s), the standard deviation of the lateral wind (Std_Uy, m/s), virtual temperature (Tv, ℃), H2O mass density (H2O, g/m3), CO2 mass density (CO2, mg/m3), friction velocity (ustar, m/s), stability (z/L), sensible heat flux (Hs, W/m2), latent heat flux (LE, W/m2), carbon dioxide flux (Fc, mg/ (m2s)), quality assessment of the sensible heat flux (QA_Hs), quality assessment of the latent heat flux (QA_LE), and quality assessment of the carbon flux (QA_Fc). In this dataset, the time of 0:30 corresponds to the average data for the period between 0:00 and 0:30; the data were stored in *.xls format. Detailed information can be found in the suggested references. For more information, please refer to Liu et al. (2011) for data processing) in the Citation section.

    2019-09-12 831 23 View Details

  • Dataset of cloud observations in Arctic Alaska (1999-2009)

    Dataset of cloud observations in Arctic Alaska (1999-2009)

    This data set of cloud observations at a site in Arctic Alaska is based on the fusion of five cloud inversion products that are well known worldwide. The temporal coverage of the data is from 1999 to 2009, the temporal resolution is one hour, and there are 512 layers vertically with a vertical resolution of 45 m. The spatial coverage is one site in Arctic Alaska, with latitude and longitude coordinates of 71°19′22.8′′N, 156°36′32.4′′ W. The remote sensing cloud inversion data products include the following official products: the all-phase cloud characteristic products produced by the Atmospheric Radiation Measurement Program of the US Department of Energy adopting a parametric method for remote sensing inversion, the ice cloud and hybrid cloud feature products obtained from the US NOAA researchers Matt Shupe and Dave Turner based on cooperative remote sensing inversion (optimization method + parametric method), the hybrid cloud feature (optimization method) products produced by Zhien Wang of the University of Wyoming, USA, the ice cloud feature (parametric method) products produced by Min Deng of the University of Wyoming, USA, and the cloud optical thickness products produced by Qilong Min of the State University of New York at Albany adopting remote sensing inversion (optimization method). The variables of the remote sensing products include cloud water effective radius, cloud water content, cloud ice effective radius, cloud ice content, cloud optical thickness, and cloud water column content; the corresponding observed inversion error ranges are approximately 10-30%, 30-60%, 10-30%, 30-60%, 10-30% and 10-20%. The data files are in the NC format, and an NC file is stored every month.

    2019-09-12 1422 1 View Details

  • Asian monsoon experiment on the Tibetan Plateau (GAME/Tibet) dataset for global energy water cycle (1997-1998)

    Asian monsoon experiment on the Tibetan Plateau (GAME/Tibet) dataset for global energy water cycle (1997-1998)

    The GAME/Tibet project conducted a short-term pre-intensive observing period (PIOP) at the Amdo station in the summer of 1997. From May to September 1998, five consecutive IOPs were scheduled, with approximately one month per IOP. More than 80 scientific workers from China, Japan and South Korea went to the Tibetan Plateau in batches and carried out arduous and fruitful work. The observation tests and plans were successfully completed. After the completion of the IOP in September, 1998, five automatic weather stations (AWS), one Portable Atmospheric Mosonet (PAM), one boundary layer tower and integrated radiation observatory (Amdo) and nine soil temperature and moisture observation stations have been continuously observed to date and have obtained extremely valuable information for 8 years and 6 months consecutively (starting from June 1997). The experimental area is located in Nagqu, in northern Tibet, and has an area of 150 km × 200 km (Fig. 1), and observation points are also established in D66, Tuotuohe and the Tanggula Mountain Pass (D105) along the Qinghai-Tibet Highway. The following observation stations (sites) are set up on different underlying surfaces including plateau meadows, plateau lakes, and desert steppe. (1) Two multidisciplinary (atmosphere and soil) observation stations, Amdo and NaquFx, have multicomponent radiation observation systems, gradient observation towers, turbulent flux direct measurement systems, soil temperature and moisture gradient observations, radiosonde, ground soil moisture observation networks and multiangle spectrometer observations used as ground truth values for satellite data, etc. (2) There are six automatic weather stations (D66, Tuotuohe, D105, D110, Nagqu and MS3608), each of which has observations of wind, temperature, humidity, pressure, radiation, surface temperature, soil temperature and moisture, precipitation, etc. (3) PAM stations (Portable Automated Meso - net) located approximately 80 km north and south of Nagqu (MS3478 and MS3637) have major projects similar to the two integrated observation stations (Amdo and NaquFx) above and to the wind, temperature and humidity turbulence observations. (4) There are nine soil temperature and moisture observation sites (D66, Tuotuohe, D110, WADD, NODA, Amdo, MS3478, MS3478 and MS3637), each of which has soil temperature measurements of 6 layers and soil moisture measurement of 9 layers. (5) A 3D Doppler Radar Station is located in the south of Nagqu, and there are seven encrypted precipitation gauges in the adjacent (within approximately 100 km) area. The radiation observation system mainly studies the plateau cloud and precipitation system and serves as a ground true value station for the TRMM satellite. The GAME-Tibet project seeks to gain insight into the land-atmosphere interaction on the Tibetan Plateau and its impact on the Asian monsoon system through enhanced observational experiments and long-term monitoring at different spatial scales. After the end of 2000, the GAME/Tibet project joined the “Coordinated Enhanced Observing Period (CEOP)” jointly organized by two international plans, GEWEX (Global Energy and Water Cycle Experiment) and CL IVAR (Climate Change and Forecast). The Asia-Australia Monsoon Project (CAMP) on the Tibetan Plateau of the Global Coordinated Enhanced Observation Program (CEOP) has been started. The data set contains POP data for 1997 and IOP data for 1998. Ⅰ. The POP data of 1997 contain the following. 1. Precipitation Gauge Network (PGN) 2. Radiosonde Observation at Naqu 3. Analysis of Stable Isotope for Water Cycle Studies 4. Doppler radar observation 5. Large-Scale Hydrological Cycle in Tibet (Link to Numaguchi's home page) 6. Portable Automated Mesonet (PAM) [Japanese] 7. Ground Truth Data Collection (GTDC) for Satellite Remote Sensing 8. Tanggula AWS (D105 station in Tibet) 9. Syamboche AWS (GEN/GAME AWS in Nepal) Ⅱ. The IOP data of 1998 contain the following. 1. Anduo (1) PBL Tower, 2) Radiation, 3) Turbulence SMTMS 2. D66 (1) AWS (2) SMTMS (3) GTDC (4) Precipitation 3. Toutouhe (1) AWS (2) SMTMS (3 )GTDC 4. D110 (1) AWS (2) SMTMS (3) GTDC (4) SMTMS 5. MS3608 (1) AWS (2) SMTMS (3) Precipitation 6. D105 (1) Precipitation (2) GTDC 7. MS3478(NPAM) (1) PAM (2) Precipitation 8. MS3637 (1) PAM (2) SMTMS (3) Precipitation 9. NODAA (1) SMTMS (2) Precipitation 10. WADD (1) SMTMS (2) Precipitation (3) Barometricmd 11. AQB (1) Precipitation 12. Dienpa (RS2) (1) Precipitation 13. Zuri (1) Precipitation (2) Barometricmd 14. Juze (1) Precipitation 15. Naqu hydrological station (1) Precipitation 16. MSofNaqu (1) Barometricmd 16. Naquradarsite (1)Radar system (2) Precipitation 17. Syangboche [Nepal] (1) AWS 18. Shiqu-anhe (1) AWS (2) GTDC 19. Seqin-Xiang (1) Barometricmd 20. NODA (1)Barometricmd (2) Precipitation (3) SMTMS 21. NaquHY (1) Barometricmd (2) Precipitation 22. NaquFx(BJ) (1) GTDC(2) PBLmd (3) Precipitation 23. MS3543 (1) Precipitation 24. MNofAmdo (1) Barometricmd 25. Mardi (1) Runoff 26. Gaize (1) AWS (2) GTDC (3) Sonde A CD of the data GAME-Tibet POP/IOP dataset cd (vol. 1) GAME-Tibet POP/IOP dataset cd (vol. 2)

    2019-09-12 16199 95 View Details

  • The dataset of atmospheric chemical composition in Namcu and Muztagh Ata (2005-2009)

    The dataset of atmospheric chemical composition in Namcu and Muztagh Ata (2005-2009)

    The data include three data sets of Namcu and Muztagh Ata: an atmospheric aerosol data set of monthly average values of TSP, lithium, sodium and other elements; an atmospheric precipitation chemical data set of monthly average values of soluble sodium ions, potassium ions, magnesium ions, calcium ions and other ions; and a data set of chemical compositions of snow ice in the Zhadang Glacier of Namcu Basin of the concentrations of soluble sodium ions, potassium ions, magnesium ions, calcium ions and other ions in snow pits collected in different months. The data can be used in conducting located observations of atmospheric aerosol element content, precipitation chemistry, and glacier snow ice chemical records in the Namco and Muztagh Ata areas. The samples were processed at the Key Laboratory of Tibetan Environment Changes and Land Surface Processes of CAS using ICS2500 and ICS2000 ion-chromatographic analyzers to determine the concentration of soluble anions and cations in the samples. Data collection and processing: 1. The automatic rain gauges were erected in the typical regions of the Tibetan Plateau (the Namco Basin and the Muztagh Ata Peak area) to collect precipitation samples. The precipitation samples were collected using a SYC-2 type rainfall sampler that comprised a collector, rain sensor and gland drive. The sample collector was provided with a rain collection bucket and a dust collection bucket, and the weather condition was sensed by the rain sensor. The rain collection bucket would be opened when it started to rain, and the gland would be pressed onto the dust collection bucket. Meanwhile, the date and the rain start and end times were automatically recorded. When the rain stopped, the gland automatically flipped to the rain collection bucket to complete a rainfall record. The collected samples were placed in 20 mL clean high-density polyethylene plastic bottles and refrigerated in a -20 °C refrigerator. They were frozen during transportation and storage until right before being analyzed, when they would be taken from the refrigerator and thawed at room temperature (20 °C). They were then processed at the Key Laboratory of Tibetan Environment Changes and Land Surface Processes CAS using ICS2500 and ICS2000 ion-chromatographic analyzers to determine the concentration of soluble anions and cations in the precipitation. 2. The atmospheric aerosol sampler installed at Namco Station was 4 m above the ground and included a vacuum pump, which was powered by solar panels and batteries. The air flux was recorded by an automatic flow meter, and the instantaneous flow rate was approximately 16.7 L/min. The air flux took the meteorological parameter conversion of the Namco area as the standard volume. A Teflon filter with a diameter of 47 mm and a pore size of 0.4 & mu; m was used. The sample interval was 7 days, and the total sample flow rate of each sample was approximately 120-150 m³. Each sample was individually placed in a disposable filter cartridge and stored at low temperature in a refrigerator. Before and after sampling, the filter was placed in a constant temperature (20 ± 5 °C) and constant humidity (40 & plusmn; 2%) environment for 48 hours and weighed with a 1/10000 electronic balance (AUW220D, Shimadu); the difference between the weights before and after was the weight of the aerosol sample on the filter. The collected samples were processed at the Key Laboratory of Tibetan Environment Changes and Land Surface Processes CAS by ICP-MS to determine the concentrations of 18 elements. Strict measures were taken during indoor and outdoor operations to prevent possible contamination. 3. A precleaned plastic shovel was used to collect a sample every 5 cm from the lower part of the snow pit (samples were collected every 10 cm in some snow pits). The samples were dissolved at room temperature, placed in 20 mL clean high-density polyethylene plastic bottles and stored in a refrigerator at -20 °C. The samples were frozen during transportation and storage until they were taken out of the refrigerator before the analysis and melted at room temperature. The samples were processed at the Key Laboratory of Tibetan Environment Changes and Land Surface Processes CAS using ICS2500 and ICS2000 ion-chromatographic analyzers to determine the concentrations of soluble anions and cations in the samples. Clean clothing, disposable masks and plastic gloves should be worn during the manual collection of glacier snow ice chemical samples to prevent contamination. The data set was processed by forming a continuous sequence of monthly mean values after the raw data were quality controlled. It meets the accuracy of routine monitoring research on precipitation, aerosol, snow and ice records in China and the world and is satisfactory for comparative study with relevant climate change records.

    2019-09-12 736 4 View Details