Brief Introduction: 三江源国家公园

Number of Datasets: 46

  • Natural places names dataset at 1:250,000 in Sanjiangyuan Region (2015)

    This data originates from the National Geographic Information Resources Catalogue Service System, which was provided free to the public by the National Basic Geographic Information Center in November 2017. We have spliced and cut the source of the three rivers as a whole, so as to facilitate the use of the study of the source area of the three rivers. The data trend is 2015. This data set includes 1:250,000 natural place names (AANP) in Sanjiangyuan area, including traffic element names, memorial sites and historic sites, mountain names, water system names, marine geographical names, natural geographical names, etc. Natural Place Name Data (AANP) Attribute Item Names and Definitions: Attribute Item Description Fill in Example NAME Name Ramsay Laboniwa PINYIN Chinese Pinyin Lamusailabaoniwa CLASS Toponymic Classification Code HB

    2019-09-15 0 9 View Details

  • Vegetation quadrat survey dataset in Maduo County (2016)

    These are the vegetation quadrat survey data of the alpine grassland and alpine meadow in Maduo County in September 2016. The dimensions of the square quadrat are 50 cm x 50 cm. The main contents of the survey include coverage, species name, vegetation height, biomass (dry weight and fresh weight), the latitude and longitude coordinates of the quadrat, slope, aspect, slope position, soil type, vegetation type, surface features (litter, gravel, wind erosion, water erosion, saline-alkaline spots, etc.), use patterns, utilization intensity and others.

    2019-09-15 0 13 View Details

  • The places names dataset at 1:250,000 in Sanjiangyuan region (2015)

    This data comes from the National Geographic Information Resources Catalogue Service System, which was provided free to the public by the National Basic Geographic Information Center in November 2017. We have spliced and cut the source of the three rivers as a whole, so as to facilitate the use of the study of the source area of the three rivers. The data trend is 2015. This data set includes 1:250,000 residential place names (AANP) in Sanjiangyuan area, including administrative place names at all levels and urban and rural residential place names. Names and Definitions of Attribute Items of Residential Place Name Data (AANP): Attribute Item Description Fill in Example NAME Name Quanqu Village PINYIN Chinese Pinyin Quanqucun CLASS Geographical Name Classification Code AK GNID Place Name Code 632524000000 XZNAME Township Name Ziketan Township

    2019-09-15 0 7 View Details

  • GIMMS3g NDVI-based phenology for Sanjiangyuan (1982-2015)

    The data set includes the estimated data on the SOS (start of season) and the EOS (end of season) of vegetation in Sanjiangyuan based on GIMMS3g version 1.0, the latest version of the GIMMS NDVI data set. Two common phenological estimation methods were adopted: the threshold extraction method based on polynomial fitting (the term “poly” was included in the file names) and the inflection point extraction method based on double logistic function fitting (the term “sig” was included in the file names). These data can be used to analyse the relationship between vegetation phenology and climate change. The temporal coverage ranges from 1982 to 2015, and the spatial resolution is 8 km.

    2019-09-15 0 5 View Details

  • Spot vegetation NDVI dataset for Sanjiangyuan (1998-2013)

    The data set is extracted from the NDVI data of long time series acquired by VEGETATION sensor on SPOT satellite. The time range of the data set is from May 1998 to 2013. In order to remove the noise in NDVI data, the maximum synthesis is carried out. A NDVI image is synthesized every 10 days. The data set is cut out from the global data set, so as to carry out the research and analysis of the source areas of the three rivers separately. The data format of this data set is geotiff, spatial resolution is 1 km, temporal resolution is 10 days, time range: May 1998 to December 2013.

    2019-09-15 0 11 View Details

  • Dataset of net primary productivity in Sanjiangyuan region (2000-2015)

    Monthly meteorological data of Sanjiangyuan includes 32 national standard meteorological stations. There are 26 variables: average local pressure, extreme maximum local pressure, date of extreme maximum local pressure, extreme minimum local pressure, date of extreme minimum local pressure, average temperature, extreme maximum temperature, date of extreme maximum temperature, extreme minimum temperature and date of extreme minimum temperature, average temperature anomaly, average maximum temperature, average minimum temperature, sunshine hours, percentage of sunshine, average relative humidity, minimum relative humidity, date of occurrence of minimum relative humidity, precipitation, days of daily precipitation >=0.1mm, maximum daily precipitation, date of maximum daily precipitation, percentage of precipitation anomaly, average wind speed, maximum wind speed, date of maximum wind speed, maximum wind speed, wind direction of maximum wind speed, wind direction of maximum wind speed and occurrence date of maximum wind speed. The data format is txt, named by the site ID, and each file has 26 columns. The names and units of each column are explained in the SURF_CLI_CHN_MUL_MON_readme.txt file. Projection information: Albers isoconic projection Central meridian: 105 degrees First secant: 25 degrees First secant: 47 degrees West deviation of coordinates: 4000000 meters

    2019-09-15 0 11 View Details

  • The boundaries of the source regions in Sanjiangyuan region (2018)

    The data set contains the boundaries of the three source regions of the Yellow River, the Yangtze River and the Lancang River, the boundary of the whole Sanjiangyuan region and the boundaries of the counties within the basin. The observation projects include the boundaries of the three source regions of the Yellow River, the Yangtze River and the Lancang River, the boundary of the whole Sanjiangyuan region and the boundaries of the counties within the basin.

    2019-09-15 0 18 View Details

  • MODIS NDVI based phpenology for Sanjiangyuan (2001-2014)

    The data set includes estimated data on the SOS (start of season) and the EOS (end of season) of vegetation in Sanjiangyuan based on the MODIS 16-day synthetic NDVI product (MOD13A2 collection 6). Two common phenological estimation methods were adopted: the threshold extraction method based on polynomial fitting (the term “poly” was included in the file names) and the inflection point extraction method based on double logistic function fitting (the term “sig” was included in the file names). These data can be used to analyse the relationship between vegetation phenology and climate change. The temporal coverage ranges from 2001 to 2014, and the spatial resolution is 1 km.

    2019-09-14 0 13 View Details

  • The meteorological data of Mt. Qomolangma, Namco, and Linzhi Stations on the Tibetan Plateau (2006-2008)

    The data set collects the long-term monitoring data on atmosphere, hydrology and soil from the Integrated Observation and Research Station of Multisphere in Namco, the Integrated Observation and Research Station of Atmosphere and Environment in Mt. Qomolangma, and the Integrated Observation and Research Station of the Alpine Environment in Southeast Tibet. The data have three resolutions, which include 0.1 seconds, 10 minutes, 30 minutes, and 24 hours. The temperature, humidity and pressure sensors used in the field atmospheric boundary layer tower (PBL) were provided by Vaisala of Finland. The wind speed and direction sensor was provided by MetOne of the United States. The radiation sensor was provided by APPLEY of the United States and EKO of Japan. Gas analysis instrument was provided by Licor of the United States, and the soil moisture content, ultrasonic anemometer and data collector were provided by CAMPBELL of the United States. The observing system is maintained by professionals on a regular basis (2-3 times a year), the sensors are calibrated and replaced, and the collected data are downloaded and reorganized to meet the meteorological observation specifications of the National Weather Service and the World Meteorological Organization (WMO). The data set was processed by forming a time continuous sequence after the raw data were quality-controlled, and the quality control included eliminating the systematic error caused by missing data and sensor failure.

    2019-09-14 0 17 View Details

  • GF-1 NDVI dataset in Maduo County (2016)

    This is the vegetation index (NDVI) for Maduo County in July, August and September of 2016. It is obtained through calculation based on the multispectral data of GF-1. The spatial resolution is 16 m. The GF-1 data are processed by mosaicking, projection coordinating, data subsetting and other methods. The maximum synthesis is then conducted every month in July, August, and September.

    2019-09-14 0 8 View Details

  • MODIS vegetation index dataset in Sanjiangyuan (2000-2018)

    The data set is MODIS vegetation index data (MOD13Q1). The source areas of the three rivers are extracted to carry out the research and analysis of the source areas of the three rivers separately. MOD13Q1 is a 16-day composite vegetation index, including normalized vegetation index (NDVI) and enhanced vegetation index (EVI). The spatial scope of Sanjiang Source covers two MODIS files (h25v05 and h26v05). Data storage format is hdf. Each file contains 12 bands: Normalized Vegetation Index (NDVI), Enhanced Vegetation Index (EVI), Data Quality (VI Quality), Red Reflectance, Near Infrared Reflectance (NIR Reflectance), Blue Reflectance, Mid Infrared Reflectance, Observation. Viewzenith angle, sun zenith angle, relative azimuth angle, composite day of the year and pixel reliability. The data format of this data set is hdf, spatial resolution is 250m, temporal resolution is 16 days, time range: February 2000 to October 2018.

    2019-09-13 0 9 View Details

  • 300-m ESA climate change initiative land cover (CCI-LC) in Sanjiangyuan (1992-2015)

    The data set contains land cover data sets from the Yellow River Source, the Yangtze River Source, and the Lancang River from 1992 to 2015. A total of 22 land cover classifications based on the UN Land Cover Classification System were included. NOAA AVHRR, SPOT, ENVISAT, PROBA-V and other vegetation classification products were integrated. In China, (1) first, combined with the 1:100,000 vegetation classification (2007) of China, quality correction and control were performed, and (2) the vegetation classification of China emphasized the combination with climate zones, when correcting CCI-LC, climate divisions and the corresponding vegetation types were combined, and the data label was comprehensively revised.

    2019-09-13 0 15 View Details

  • SPOT Vegetation NDVI-based phenology for Sanjiangyuan (1999-2013)

    The data set includes the estimated data of the SOS (start of season) and the EOS (end of season) of vegetation in Sanjiangyuan based on 10-day synthetic NDVI products from the SPOT satellite. Two common phenological estimation methods were adopted: the threshold extraction method based on polynomial fitting (the term “poly” was included in the file names) and the inflection point extraction method based on double logistic function fitting (the term “sig” was included in the file names). These data can be used to analyse the relationship between vegetation phenology and climate change. The temporal coverage is from 1999 to 2013, and the spatial resolution is 1 km.

    2019-09-13 0 6 View Details

  • Source region of the Yangtze River - land cover and vegetation type ground verification point dataset

    The dataset is the ground verification point dataset of land cover and vegetation type in the Source Region of the Yangtze River (in the south of Qinghai Province) which collected during August 2018. In the dataset, the homogeneous patches are considered as the main targets of this collection. They are easy to be recognized out and distinguished from other vegetation types. And these samples have high representativeness comparing with other land surface features. In each sample, the geographical references, longitude and latitude (degree, minute, second), time (24h) and elevation (0.1m) are recorded firstly according to GPS positioning. Vegetation types, constructive species, characteristics, land types and features, landmarks, etc. are recorded into the property table manually for checking in laboratory. At last, each sample place has been taken at least 1 photography. In this dataset, 90% or more samples have been taken 2 or more in field landscape photographs for land use type and vegetation classification examination. We have carefully examined the position accuracy of each sample in Google Earth. After 2 rounds of checking and examination, the accuracy and reliability of the property of each sample have been guaranteed.

    2019-09-12 0 11 View Details

  • Automatic weather station dataset from Guoluo station (2017)

    The data set contains meteorological observations from Guoluo Station from January 1, 2017, to December 31, 2017, and includes temperature (Ta_1_AVG), relative humidity (RH_1_AVG), vapour pressure (Pvapor_1_AVG), average wind speed (WS_AVG), atmospheric pressure (P_1), average downward longwave radiation (DLR_5_AVG), average upward longwave radiation (ULR_5_AVG), average net radiation (Rn_5_AVG), average soil temperature (Ts_TCAV_AVG), soil water content (Smoist_AVG), total precipitation (Rain_7_TOT), downward longwave radiation (CG3_down_Avg), upward longwave radiation (CGR3_up_Avg), average photosynthetically active radiation (Par_Avg), etc. The temporal resolution is 1 hour. Missing observations have been assigned a value of -99999.

    2019-09-12 0 11 View Details

  • Source region of Yellow River - land cover and vegetation type ground verification point dataset

    The dataset is the ground verification point dataset of land cover and vegetation type in the Source Region of Yellow River (in the north of Zaling Lake, Qinghai Province) which collected during August 2018. In the dataset, the homogeneous patches are considered as the main targets of this collection. They are easy to be recognized out and distinguished from other vegetation types. And these samples have high representativeness comparing with other land surface features. In each sample, the geographical references, longitude and latitude (degree, minute, second), time (24h) and elevation (0.1m) are recorded firstly according to GPS positioning. Vegetation types, constructive species, characteristics, land types and features, landmarks, etc. are recorded into the property table manually for checking in laboratory. At last, each sample place has been taken at least 1 photography. In this dataset, 90% or more samples have been taken 2 or more in field landscape photographs for land use type and vegetation classification examination. We have carefully examined the position accuracy of each sample in Google Earth. After 2 rounds of checking and examination, the accuracy and reliability of the property of each sample have been guaranteed.

    2019-09-12 0 13 View Details

  • China lake dataset (1960s-2015)

    The multi-decadal lake number and area changes in China during 1960s–2015 are derived from historical topographic maps and >3831 Landsat satellite images, including lakes as fine as ≥1 km2 in size. The total area of lakes in China has increased by 5858.06 km2 (9%) between 1960s and 2015, and with heterogeneous spatial variations. Lake area changes in the Tibetan Plateau, Xinjiang, and Northeast Plain and Mountain regions reveal significant increases of 5676.75, 1417.15, 1134.87 km2 (≥15%), respectively, but the Inner-Mongolian Plateau shows an obvious decrease of 1223.76 km2 (22%). We find that 141 new lakes have appeared predominantly in the arid western China; but 333 lakes, mainly located in the humid eastern China, have disappeared over the past five decades.

    2019-09-12 0 45 View Details

  • Hoh Xil - land cover and vegetation type ground verification point dataset

    The dataset is the ground verification point dataset of land cover and vegetation type in the Hoh Xil (in the northwest of Qinghai Province) which collected during August 2018. In the dataset, the homogeneous patches are considered as the main targets of this collection. They are easy to be recognized out and distinguished from other vegetation types. And these samples have high representativeness comparing with other land surface features. In each sample, the geographical references, longitude and latitude (degree, minute, second), time (24h) and elevation (0.1m) are recorded firstly according to GPS positioning. Vegetation types, constructive species, characteristics, land types and features, landmarks, etc. are recorded into the property table manually for checking in laboratory. At last, each sample place has been taken at least 1 photography. In this dataset, 90% or more samples have been taken 2 or more in field landscape photographs for land use type and vegetation classification examination. We have carefully examined the position accuracy of each sample in Google Earth. After 2 rounds of checking and examination, the accuracy and reliability of the property of each sample have been guaranteed.

    2019-09-11 0 8 View Details