The data of farmland distribution on the Qinghai-Tibet Plateau were extracted on the basis of the land use dataset in China (2015). The dataset is mainly based on landsat 8 remote sensing images, which are generated by manual visual interpretation. The land use types mainly include the cultivated land, which is divided into two categories, including paddy land (1) and dry land (2). The spatial resolution of the data is 30m, and the time is 2015. The projection coordinate system is D_Krasovsky_1940_Albers. And the central meridian was 105°E and the two standard latitudes of the projection system were 25°N and 47°N, respectively. The data are stored in TIFF format, named “farmland distribution”, and the data volume is 4.39GB. The data were saved in compressed file format, named “30 m grid data of farmland distribution in agricultural and pastoral areas of the Qinghai-Tibet Plateau in 2015”. The data can be opened by ArcGIS, QGIS, ENVI, and ERDAS software, which can provide reference for farmland ecosystem management on the QTP.
LIU Shiliang SUN Yongxiu LI Mingqi
The Grassland Degradation Assessment Dataset in agricultural and pastoral areas of the Qinghai-Tibet Plateau (QTP) is a data set based on the 500m Global Land Degradation Assessment Data (2015), which is evaluated according to the degree of grassland degradation or improvement. In this dataset, the grassland degradation of the QTP was divided into two evaluation systems. At the first level, the grassland degradation assessment was divided into 3 types, including no change type, improvement type and degradation type. At the second level, the grassland degradation assessment on the QTP was divided into 9 types, among which the type with no change was class 1, represented by 0. There were 4 types of improvement: slight improvement (3), relatively significant improvement (6), significant improvement (9) and extremely significant improvement (12). The degradation types can be divided into 4 categories: slight degradation (-3), relatively obvious degradation (-6), obvious degradation (-9) and extremely obvious degradation (-12). This dataset covers all grassland areas on the QTP with a spatial resolution of 500m and a time of 2015. The projection coordinate system is D_Krasovsky_1940_Albers. The data are stored in TIFF format, named “grassdegrad”, and the data volume is 94.76 MB. The data were saved in compressed file format, named “500 m grid data of grassland degradation assessment in agricultural and pastoral areas of the Qinghai-Tibet Plateau in 2015”. The file volume is 2.54 MB. The data can be opened by ArcGIS, QGIS, ENVI, and ERDAS software, which can provide reference for grassland ecosystem management and restoration on the QTP.
LIU Shiliang SUN Yongxiu LIU Yixuan
The birds along elevation gradients in Gangrigabu Mountains were investigated by point count method. With a 400-meter elevational gradient, elevation zones were set up in the survey area. Five elevation zones were built in the north slope from TongMai Town to Galong Temple in Bome County, and 8 elevation zones were built in the south slope from Jiefang Bridge to Galongla in Medog County. So that we can make clear about the pattern and maintenance mechanism of bird diversity along elevation gradients in this region. The data of bird diversity and distribution will be used to further explore the key scientific issues such as the impact of climate change on bird diversity and adaptation strategies, and the response and protection strategies of bird species diversity under the global climate change.
YANG Xiaojun
In November 2020, we made a collection in Qinghai Tibet Plateau were collected by net and electric capture methods, and the sampling area included the main water systems in Qinghai Province. A total of 30 sampling points were collected, and 685 fish specimens were collected in 12 points, including Schizothorax of loach.This work is a part of the project of “Building Methods for Detection of Aquatic Organisms in the Lake System of the Qinghai-Tibet Plateau”, using traditional fish survey data to generate a list of species in the lake system, which will then be used to combine multiple lakes in the plateau. High-throughput molecular data acquired from the system's environmental water samples and tested for visual parameters (lake size, isolation, geographic location, and spectral characteristics) that can be used to predict aquatic biodiversity.
LIU Shuwei
From October to November 2020, we used both live traps and camera traps to collect mammal diversity and distributions along the elevational gradients at the Yarlung Zangbo Grand Canyon National Nature Reserve. We set trap lines for small mammals inventory, with a total of 8000 live trap nights. We collected 526 individuals and1052 tissue samples of small mammals during the field sampling. We also retrived images of 130 camera traps placed between May 2020 and October 2020. We obtained 4218 pictures of wild animals,25 species of large and medium mammals were recorded.. The camera traps were reset in the same locations after renew batteries and memory cards. Small mammal data consist of richness, abundance, traits, environmental gradients etc, and could be used to model relationship between environmental gradients and traits concatenated by richness matrix. Camera trap data could inventory endangered species in the region, and provide information to identify biodiversity hotspots and conservation priorities.
LI Xueyou
The data include the Cenozoic plant fossils collected from Gansu, Qinghai and Yunnan by the Department of paleontology, School of Geological Sciences and mineral resources, Lanzhou University from 2019 to 2020. All the fossils were collected by the team members in the field and processed in the laboratory by conventional fossil restoration methods and cuticle experiment methods. The fossils are basically well preserved, some of which are horned The study of these plant fossils is helpful to understand the Cenozoic paleoenvironment, paleoclimate, paleogeographic changes and vegetation features of the eastern Qinghai Tibet Plateau.
YANG Tao
Gwadar deep water port is located in the south of Gwadar city in the southwest of Balochistan province, Pakistan. It is 460km away from Karachi in the East and 120km away from Pakistan Iran border in the West. It is adjacent to the Arabian Sea in the Indian Ocean in the South and the Strait of Hormuz and Red Sea in the West. It is a port with strategic position far away from Muscat, capital of Oman. This data is the land cover data of Gwadar and its surrounding areas. The data is from globeland30 with a spatial resolution of 30 meters and a data format of TIFF. The classification images used in the development of globeland30 data set mainly include Landsat's TM5, ETM +, oli multispectral images and HJ-1 multispectral images. Using the Pok based classification method, the total volume accuracy is 83.50%, and the kappa coefficient is 0.78.
WU Hua
The western and northeastern Yunnan is located in the southeast of the Qinghai Tibet Plateau. Previous genetic studies have shown that there are substantial genetic imprints of late Paleolithic human in this region, and these ancient genetic imprints are likely to spread further to the Qinghai Tibet Plateau. Therefore, the genetic study of the population in this area is helpful to clarify the migration history of early human settlement in the Qinghai Tibet Plateau. In this study, we studied the genetics of Dai people in different areas of Yunnan Province. The mitochondrial DNA hypervariable regions of 264 Dai individuals were sequenced by Sanger sequencing. Based on phylogenetic analysis, we control the quality of these data to ensure that there is no sample contamination and other quality problems. According to the revised Cambridge Reference Sequence, the variants were recorded. According to the phylogenetic tree of mitochondrial DNA in the world population (PhyloTree.org), each sample was allocated into certain haplogrop. Based on the published mtDNA data of Dai people in other areas, the maternal genetic structure and formation mechanism of Dai population were systematically studied. The results showed that there was a close genetic relationship among the Dai populations in different regions, and the haplogroups (F1a, M7B and B5a) shared by these populations could be traced back to southern China, suggesting that the Dai population might have originated in southern China and migrated southward to the mainland and Southeast Asia in the Iron or Bronze age. The genetic differentiation of the Dai population in different regions is consistent with the phenomenon that their language and culture have some differences, which indicates that the Dai people and the surrounding populations in the southward migration.
KONG Qingpeng
To investigate the paternal genetic structure of Tibetans from Shigatse, 434 male samples were collected from Shigatse, Tibet. Firstly, SNP genotyping was performed to allocate samples into haplogroups. To further evaluate the genetic diversity of the major Y-chromosomal haplogroup in Tibetan populations from Lhasa, eight commonly used Y-chromosomal STR (short tandem repeat) loci (DYS19, DYS388, DYS389I, DYS389II, DYS390, DYS391, DYS392, and DYS393) were genotyped using fluorescence-labeled primers with an ABI 3130XL Genetic Analyzer (Applied Biosystems, USA). The results indicated that haplogroup O-M175 displayed highest frequency in Shigatse Tibetans (47.00%, the majority of its sublineages were O2-M122), followed by haplogroups D-M174 (40.78%, with most of the samples belonging to D-P47 (20.97%) and D-N1(16.82%)). Another relatively rare lineages in Shigatse Tibetans were C-M217 (1.84%), R1a1- M17 (1.61%), N1-LLY22G (5.76%), Q-M242 (0.69%). In combination with the data from Lhasa that released in 2019, our Y chromosome data of Tibetans from different locations on the Tibetan Plateau will be very helpful to understanding the paternal genetic structure of Tibetans. Moreover, the genetic history of Tibetans can also be dissected by phylogeographic and coalescent analyses.
KONG Qingpeng QI Xuebin
We obtained the whole genome variation data of 30 Tibetan individuals. The SNP typing of 30 samples was carried out by DNA array method, and about 700000 loci (including nuclear genome, mitochondrial DNA and Y chromosome) of each sample were obtained. First, after extracting genomic DNA, DNA amplification, enzymatic fragmentation, precipitation and re suspension were carried out. After the sample was incubated overnight and hybridized with beadchip, the DNA was annealed to obtain a site-specific 50 mer probe, covalently coupled with an Infinium bead type. Then Infinium XT was used to extend the enzyme base to give the allele specificity, and then fluorescent staining was carried out. The fluorescence intensity of the beads was detected by iSCAN system, and the Illumina software automatically performed the analysis and genotype recognition. Finally, the SNP typing results of each sample were obtained. Based on the above data, relevant biological information analysis (mainly including chip site quality control analysis, Y chromosome and mitochondrial DNA haplotype analysis) was carried out. This data is helpful to analyze the genetic structure of Tibetan population from the perspective of nuclear genome, Y chromosome and mitochondrial DNA. By comparing with the data of people around the plateau, we can trace the migration and settlement history of the plateau population comprehensively.
KONG Qingpeng
1) Data content: the main ecological environment data retrieved from remote sensing in Pan third polar region, including PM2.5 concentration, forest coverage, Evi, land cover, and CO2; 2) data source and processing method: PM2.5 is from the atmospheric composition analysis group web site at Dalhousie University, and the forest coverage data is from MODIS Vegetation continuum Fields (VCF), CO2 data from ODIAC fossil fuel emission dataset, EVI data from MODIS vehicle index products, and land cover data from ESA CCI land cover. 65 pan third pole countries and regions are extracted, and others are not processed; 3) data quality description: the data time series from 2000 to 2015 is good; 4) data application achievements and prospects: it can be used for the analysis of ecological environment change.
LI Guangdong
This dataset records The experiment of soil water content in the lower reaches of the Tarim River (Karl) was carried out by the members of the Xinjiang salt water Regiment (Karl) from September to September, 2020 In order to study the phenotypic characteristics of different plants under high salinity saline water irrigation, and to explore the feasibility of high salinity saline water for vegetation construction.
LI Xinrong HE Mingzhu ZHAO Zhenyong
The data set includes the start time (year, month), location (longitude and latitude), duration (month), drought intensity and vulnerability data of vegetation response to drought in Central Asia from 1982 to 2015, with a spatial resolution of 1 / 12 °. The drought events were identified by the standardized precipitation evapotranspiration index at the time scale of 12 months (spei12) < - 1.0. The specific algorithm of drought characteristics and vegetation vulnerability is detailed in the citation. The dataset has been applied in the study of vegetation vulnerability to drought in Central Asia, and has application prospects in the research fields of spatial-temporal characteristics of drought events, drought-vegetation interaction mechanism, drought risk assessment and so on.
DENG Haoyu
The study of fossils in Bangor and Lunpola is of great significance, and the date of fossils is indispensable. There are volcanic tuffs in this area. Zircon can be used for U-Pb age analysis to determine the age of strata and fossils. This data shows the zircon U-Pb age analysis results of tuff samples from bango and Lunpola fossil sites in a graphical way. The figure shows the shape of a large number of zircons, and indicates the age analysis results on different zircon samples. The data show the large sample size used in related research, and the analysis results are also clear. The image display of this data is intuitive and clear, and the results are reliable, which is of great significance to the study of the Qinghai Tibet Plateau.
SUN Boyang
This data is the distribution data of the prehistoric era sites on the Qinghai-Tibet Plateau and surrounding areas, which is derived from the Supplementary Maps of the paper: Chen, F.H., Dong, G.H., Zhang, D.J., Liu, X.Y., Jia, X., An, C.B., Ma, M.M., Xie, Y.W., Barton, L., Ren, X.Y., Zhao, Z.J., & Wu, X.H. (2015). Agriculture facilitated permanent human occupation of the Tibetan Plateau after 3600 BP. SCIENCE, 347, 248-250. The Qinghai-Tibet Plateau, with an average altitude of more than 4000m, is the highestand largest plateau all around the world, and also is one of the most unsuitable areas for human life with long-term on the earth. The remains at the archaeological site are direct evidences left behind the ancient human activities. The original data of this data is digitized from the results of the Qinghai-Tibet Plateau high-textual census and archaeological survey (Qinghai Volume and Tibet Volume of the Chinese Cultural Relics Atlas). The map was digitized mainly based on the distribution maps of the sites, and the latitude and longitude coordinates and altitude were obtained. a total of 6,950 sites, most of which are distributed in the northern part of the plateau. The age range of the site is between 7000BP and 2300BP. This data set is of reference value for the research on the process and power of human diffusion to the Tibetan Plateau in the prehistoric era and other studies related to human activities in the Tibetan Plateau and the prehistoric era.
DONG Guanghui LIU Fengwen
From April 2020 to August 2020, sub project 3 collected 51 ear tissue samples of Qinghai fine wool sheep distributed in Haiyan County, Haixi Mongolian and Tibetan Autonomous Prefecture, Qinghai Province, 50 blood samples of Oula sheep in Tongde County, Hainan Tibetan Autonomous Prefecture, 50 blood samples of yak in Tongde County, Hainan Tibetan Autonomous Prefecture, 60 blood samples of Haidong donkey in Datong Hui and Tu Autonomous County, Xining City, and tissue samples A total of 211 copies. At the same time, the information of body length, body height, weight, age and gender, as well as the data of economic traits such as litter size, wool fineness and wool length were recorded. The individual photos were taken, and the information of feeding mode and epidemic situation were obtained through questionnaire survey.
TIAN Fei
In order to study the population evolution history and local adaptive genetic mechanism of main domesticated equine animals in Qinghai Tibet Plateau and its surrounding areas, and to establish the corresponding germplasm genetic resource bank. We have sequenced 236 horse samples collected in Qinghai Province, Tibet Autonomous Region and Xinjiang Autonomous Region by the end of 2018, including Tibetan horse, Tibetan donkey, plain domestic donkey and Jiama plain local breed. Seventy five samples (including 73 donkey samples and two horse samples) were sequenced for mitochondrial genome and D-loop sequencing. A number of genomic data were generated by sequencing, which provided data for tracing the domestication, migration, expansion and other historical events of horse domesticated animals in this area, and further exploring the adaptation mechanism of equine animals to the harsh environment such as hypoxia, high temperature and dryness.
LI Yan
In order to describe the diseases of the main domesticated animals in the Qinghai Tibet Plateau and its surrounding areas, investigate the epidemic situation of the main domestic animals in the Qinghai Tibet Plateau, collect the genetic samples of the resistant and susceptible individuals and the intestinal microbial samples of the main epidemic diseases of the main domestic animals. The data set includes 48 samples of brown cattle in Yili area of Xinjiang, 39 samples of Haidong Mongolian sheep in Qinghai, 32 samples of Qinghai horse, 20 samples of Shangri La yellow cattle in Yunnan and 20 samples of goat. All the samples were fresh feces, and the results of 16S sequencing were obtained after DNA extraction. All the data are original data without any analysis. The purpose of testing these samples is to compare the differences of intestinal microbial species and quantity among different domestic animals in the pan third polar region.
DUAN Ziyuan
This dataset is derived from the paper: Su, T. et al. (2019). No high tibetan plateau until the Neogene. Science Advances, 5(3), eaav2189. doi:10.1126/sciadv.aav2189 This data contains supplementary material of this article. Researchers discovered well-preserved palm fossil leaves from the Lunpola Basin (32.033°N, 89.767°E), central Tibetan Plateau at a present elevation of 4655 m in 2016. Researchers compared the newly discovered fossil with those present fossil that are most similar, find that there is no similar leaves among present fossil, therefore, researchers proposed the new species <em>S. tibetensis</em> T. Su et Z.K. Zhou sp. nov. Using the climate model, combined with the research of the fossil, researchers rebuilt the paleoelevation of the central Tibetan Plateau, it shows that a high plateau cannot have existed in the core of Tibet in the Paleogene. The data contains the following tables: 1) Table S1. Fossil records of palms around the world. 2) Table S2. Morphological comparisons between fossils from Lunpola Basin and modern palm genera. 3) Table S3. Climate ranges of 12 living genera that show the closest morphological similarity to <em>S. tibetensis</em> T. Su et Z.K. Zhou sp. nov. This dataset also contains the figures in the supplementary material in the article.
SU Tao
1) Data content: including the Potential distribution map of amphipods in the Tibetan Plateau Lake. 2) The occurrence data are based on species list and distribution dataset from the Tibetan Plateau. We made potential distributions of amphipods across its range under present, Last Glacial Maximum (LGM) and mid-Holocene. 3) All the collection information are checked carefully. 4) This project, is to provide basic data for the protection of water resources and biodiversity of lakes in the Tibetan Plateau.
HOU Zhonge