This data set is the distribution data of permafrost and underground ice in Qilian Mountains. Based on the existing borehole data, combined with the Quaternary sedimentary type distribution data and land use data in Qilian mountain area, this paper estimates the distribution of underground ice from permafrost upper limit to 10 m depth underground. In this data set, 374 boreholes in Qilian mountain area are used, and the indication function of Quaternary sedimentary type to underground ice storage is considered, so it has certain reliability. This data has a certain scientific value for the study of permafrost and water resources in Qilian Mountains. In addition, it has a certain promotion value for the estimation of underground ice reserves in the whole Qinghai Tibet Plateau.
SHENG Yu
This dataset contains measurements of L-band brightness temperature by an ELBARA-III microwave radiometer in horizontal and vertical polarization, profile soil moisture and soil temperature, turbulent heat fluxes, and meteorological data from the beginning of 2016 till August 2019, while the experiment is still continuing. Auxiliary vegetation and soil texture information collected in dedicated campaigns are also reported. This dataset can be used to validate the Soil Moisture and Ocean Salinity (SMOS) and Soil Moisture Active Passive (SMAP) satellite based observations and retrievals, verify radiative transfer model assumptions and validate land surface model and reanalysis outputs, retrieve soil properties, as well as to quantify land-atmosphere exchanges of energy, water and carbon and help to reduce discrepancies and uncertainties in current Earth System Models (ESM) parameterizations. ELBARA-III horizontal and vertical brightness temperature are computed from measured radiometer voltages and calibrated internal noise temperatures. The data is reliable, and its quality is evaluated by 1) Perform ‘histogram test’ on the voltage samples (raw-data) of the detector output at sampling frequency of 800 Hz. Statistics of the histogram test showed no non-Gaussian Radio Frequency Interference (RFI) were found when ELBAR-III was operated. 2) Check the voltages at the antenna ports measured during sky measurements. Results showed close values. 3) Check the instrument internal temperature, active cold source temperature and ambient temperature. 3) Analysis the angular behaviour of the processed brightness temperatures. -Temporal resolution: 30 minutes -Spatial resolution: incident angle of observation ranges from 40° to 70° in step of 5°. The area of footprint ranges between 3.31 m^2 and 43.64 m^2 -Accuracy of Measurement: Brightness temperature, 1 K; Soil moisture, 0.001 m^3 m^-3; Soil temperature, 0.1 °C -Unit: Brightness temperature, K; Soil moisture, m^3 m^-3; Soil temperature, °C/K
Bob Su WEN Jun
This data includes the ground temperature data of the source area of the Yellow River The main model of Permafrost Distribution in the source area of the Yellow River is constructed based on the permafrost boreholes and the measured ground temperature data. The temperature value of the permafrost on the sunny slope terrain is adjusted separately, and the fine-tuning model under the sunny slope terrain is established. The simulation results of the boreholes participating in the model construction are compared with the measured results, and the results show that the model is involved in the construction of the model The results show that the model is feasible to simulate the spatial distribution pattern of permafrost annual average ground temperature in the source area of the Yellow River
SHENG Yu LI Jing
The distribution data of permafrost in the source area of the Yellow River is established based on the annual average ground temperature model of permafrost in the source area of the Yellow River. The annual average ground temperature of 0 ℃ is taken as the standard and boundary for dividing seasonal frozen soil and permafrost. Compared with the available permafrost maps of the source region of the Yellow River (1:3 million) and the permafrost background survey project of the Qinghai Tibet Plateau (1:1 million), the data set is based on the measured data of the Yellow River source area, which has higher consistency with the measured data, and the simulation accuracy of the permafrost distribution map is the highest. The data set can be used to verify the distribution of permafrost in the source area of the Yellow River, as well as to study the frozen soil environment.
SHENG Yu LI Jing
This dataset is derived from the paper: Ding, J., Wang, T., Piao, S., Smith, P., Zhang, G., Yan, Z., Ren, S., Liu, D., Wang, S., Chen, S., Dai, F., He, J., Li, Y., Liu, Y., Mao, J., Arain, A., Tian, H., Shi, X., Yang, Y., Zeng, N., & Zhao, L. (2019). The paleoclimatic footprint in the soil carbon stock of the Tibetan permafrost region. Nature Communications, 10(1), 4195. doi:10.1038/s41467-019-12214-5. This data contains R code and a new estimate of Tibetan soil carbon pool to 3 m depth, at a 0.1° spatial resolution. Previous assessments of the Tibetan soil carbon pools have relied on a collection of predictors based only on modern climate and remote sensing-based vegetation features. Here, researchers have merged modern climate and remote sensing-based methods common in previous estimates, with paleoclimate, landform and soil geochemical properties in multiple machine learning algorithms, to make a new estimate of the permafrost soil carbon pool to 3 m depth over the Tibetan Plateau, and find that the stock (38.9-34.2 Pg C) is triple that predicted by ecosystem models (11.5 ± 4.2 Pg C), which use pre-industrial climate to initialize the soil carbon pool. This study provides evidence that illustrates, for the first time, the bias caused by the lack of paleoclimate information in ecosystem models. The data contains the following fields: Longitude (°E) Latitude (°N) SOCD (0-30cm) (kg C m-2) SOCD (0-300cm) (kg C m-2) GridArea (k㎡) 3mCstcok (10^6 kg C)
DING Jinzhi WANG Tao
The data includes the distribution data of underground ice in permafrost layer in the source area of the Yellow River. Based on the field data of 105 boreholes, such as landform and genetic type, permafrost temperature distribution, lithology composition and water content, the permafrost layer in the source area of the Yellow River is estimated to be 3.0-10.0 M The results show that the average ice content per cubic meter of soil in the source area of the Yellow River is close to the estimated value of underground ice storage in permafrost regions of the Qinghai Tibet Plateau calculated by Zhao Lin et al. The data is also of great significance for frozen soil prediction, evaluation of landscape stability in permafrost regions, and regional changes of topography, vegetation and hydrology caused by environmental changes.
SHENG Yu WANG Shengting
Active layer thickness in mountians shows strong spatial heterogeneity mainly due to the complex terrain. In this data set, the active layer thickness in the upper reaches of Heihe River Basin is systematically investigated by ground-penetrating radar (GPR) and other traditional methods. Compared with other direct measurement methods, the error is about 8 cm, indicating a high reliability. This data set can provide detailed field data for understanding the active layer thickness in this area and can provide evaluation datasets for the land surface model, especially for permafrost research.
CAO Bin
The data includes continuous and discontinuous permafrost and seasonally frozen ground distributed in the Qilian Mountains. Based on the field investigation, borehole drillings along the highway as well as previous data collected from the documentations, the lower limits of permafrost and the formula of the lower limits of permafrost in the Qilian Mountains is obtained by regression analysis. The digital elevation model (DEM) data is the SRTM (Shuttle Radar Topography Mission) jointly measured by NASA and NIMA. After the data being transformed into GCS WGS 1984 coordinate system, it is resampled into 100 m spatial resolution. The altitude of 3000 m was used to define the area of the Qilian Mountains. With the aid of ArcGIS platform and the support of DEM data, the permafrost distribution map of the Qilian Mountains with a resolution of 100 m is simulated. The lower limits of permafrost obtained by the regression analysis passed the significance test. According to the 548 existing borehole data points, the verification accuracy of permafrost area is 90.11%. The data can be used to estimate the ground ice content and the amount of water released from permafrost degradation.
SHENG Yu
The data include continuous permafrost area, discontinuous permafrost area and seasonal permafrost area. Based on the field scientific investigation, road survey drilling points and the previous data of the lower boundary elevation of permafrost, the formula of the lower boundary elevation of permafrost is obtained by regression. The DEM data is the SRTM (Shuttle Radar Topography Mission) data jointly measured by NASA and NIMA. After the data is transformed into GCS · WGS · 1984 coordinate system, it is resampled into 100m spatial resolution. The altitude of the data is 3000m to define the Qilian mountain area. With the aid of ArcGIS platform and the support of DEM data, the permafrost distribution map of Qilian Mountain with a resolution of 100m is simulated. The lower bound model obtained by regression has passed the significance test. According to the 548 existing borehole data points, the verification accuracy of permafrost area is 90.11%. The data can be used to estimate the underground ice content and the amount of water released from permafrost degradation.
SHENG Yu
The data includes the runoff components of the main stream and four tributaries in the source area of the Yellow River. In 2014-2016, spring, summer and winter, based on the measurement of radon and tritium isotopic contents of river water samples from several permafrost regions in the source area of the Yellow River, and according to the mass conservation model and isotope balance model of river water flow, the runoff component analysis of river flow was carried out, and the proportion of groundwater supply and underground ice melt water in river runoff was preliminarily divided. The quality of the data calculated by the model is good, and the relative error is less than 20%. The data can provide help for the parameter calibration of future hydrological model and the simulation of hydrological runoff process.
WAN Chengwei
The data set of hydrogeological elements in the typical frozen soil area of Qilian Mountain mainly includes groundwater type, water richness (single water inflow or single spring flow), main rivers and tributaries, spring water (falling springs, spring groups, large springs, Mineral spring distribution), borehole (pressure water borehole, submerged borehole, gravity flow borehole distribution), fault zone (compressive fracture, tensile fracture), angle unconformity boundary, parallel unconformity boundary, west branch of upper Heihe River The boundary of the watershed, the seasonal frozen soil area and the permafrost distinguish the boundary, the distribution of modern glaciers and swamps. This data set of hydrogeological elements can provide background information for the hydrological ecological process and hydrogeological environment in cold regions. This data comes from the vectorization of four 1: 200,000 hydrogeological maps (Qilian, Yenigou, Qilian, and Sunan) and reintegrates the groundwater types. With higher resolution, the data can provide background information for the research on the evolution of water and soil resources and environmental changes in the source area of the Pan-Third Pole River.
SUN Ziyong
The ground temperature, moisture and ice content at various depth (0 cm, 4 cm, 10 cm, 20 cm, 40 cm, 80 cm, 120 cm, 160 cm, 240 cm, 400 cm, 600 cm, 900 cm, 1200 cm, 1400 cm, 1500 cm) was generated through the SHAW model, which was evaluated by observations at AWS stations and WSN in the study area and could be used in research relevant on soil freezing and thawing.
ZHANG Yanlin
Chinese Cryospheric Information System is a comprehensive information system for the management and analysis of cryospheric data over China. The establishment of Chinese Cryospheric Information System is to meet the needs of earth system science, and provide parameters and verification data for the development of response and feedback models of permafrost, glacier and snow cover to global changes under GIS framework. On the other hand, the system collates and rescues valuable cryospheric data to provide a scientific, efficient and safe management and analysis tool. Chinese Cryospheric Information System selected three regions with different spatial scales as its main research areas to highlight the research focus. The research area along the Qinghai-Tibet highway is mainly about 700 kilometers long from Xidatan to Naqu, and 20 to 30 kilometers wide on both sides of the highway. The datasets of the Tibetan highway contains the following types of data: 1. Cryosphere data.Including: snow depth distribution. 2. Natural environment and resources.Include: Digital elevation topography (DEM) : elevation elevation, elevation zoning, slope and slope direction; Fundamental geology: Quatgeo 3. Boreholes: drilling data of 200 boreholes along the qinghai-tibet highway. Engineering geological profile (CAD) : lithologic distribution, water content, grain fraction data, etc 4. Model of glacier mass equilibrium distribution along qinghai-tibet highway: prediction of frozen soil grid data. The graphic data along the qinghai-tibet highway includes 13 map scales of 1:250,000.The grid size is 100×100m. For details, please refer to the documents (in Chinese): "Chinese Cryospheric Information System design. Doc", "Chinese Cryospheric Information System data dictionary. Doc", "Database of the Tibetan highway. Doc".
LI Xin
In April 2014 and may 2016, 21 Lakes (7 non thermal lakes and 14 thermal lakes) were collected in the source area of the Yellow River (along the Yellow River) respectively. The abundance of hydrogen and oxygen allogens was measured by Delta V advantage dual inlet / hdevice system in inno tech Alberta laboratory in Victoria, Canada. The isotope abundance was expressed in the form of δ (‰) (relative to the average seawater abundance in Vienna) )Test error: δ 18O: 0.1 ‰, δ D: 1 ‰. The data also includes Lake area and lake basin area extracted from Landsat 2017 image data in Google Earth engine.
WAN Chengwei
This data set includes the concentration and distribution data of main persistent organic pollutants in the environmental media of Sanjiangyuan area. The samples were collected in May 2018, covering Sanjiangyuan Nature Reserve and its surrounding areas. The sample was prepared by Soxhlet extraction purification concentration and other pretreatment steps, and then determined by gas chromatography ion trap mass spectrometry. The target compounds include organochlorine pesticides, polychlorinated biphenyls, polycyclic aromatic hydrocarbons, etc. During sample pretreatment, mirex and pcb-30 were added as recovery markers. The internal standards for sample testing are PCNB and PCB-209. After calculation, the recovery of samples is generally between 60% - 101%.
GONG Ping WANG Xiaoping
This data set uses SMMR (1979-1987), SSM / I (1987-2009) and ssmis (2009-2015) daily brightness temperature data, which is generated by double index (TB V, SG) freeze-thaw discrimination algorithm. The classification results include four types: frozen surface, melted surface, desert and water body. The data covers the source area of three rivers, with a spatial resolution of 25.067525 km. It is stored in geotif format in the form of ease grid projection. Pixel values represent the state of freezing and thawing: 1 for freezing, 2 for thawing, 3 for deserts, 4 for water bodies. Because all TIF files in the dataset describe the scope of Sanjiangyuan National Park, the row and column number information of these files is unchanged, and the excerpt is as follows (where the unit of cellsize is m): ncols 52 nrows 28 cellsize 25067.525 nodata_value 0
JIN Rui
The spatial-temporal distribution map of topographic shadows in the upper reaches of Heihe River (2018), which is calculated based on the SRTM DEM and the solar position (http://www.esrl.noaa.gov/gmd/grad/solcalc/azel.html). The spatial resolution is 100 m and the time resolution is 15 min. The datased can be used in the fields of ecological hydrology and remote sensing research. Using the observed solar radiation at several automatic weather stations in the upper reaches of Heihe River, the accuracy of the calculation results is verified. Results show that the dataset can accurately capture the temporal and spatial changes of the topographic shadow at the stations, and the time error is within 20 minutes.
ZHANG Yanlin
The permafrost stability map was created based on the classification system proposed by Guodong Cheng (1984), which mainly depended on the inter-annual variation of deep soil temperature. By using the geographical weighted regression method, many auxiliary data was fusion in the map, such as average soil temperature, snow cover days, GLASS LAI, soil texture and organic from SoilGrids250, soil moisture products from CLDAS of CMA, and FY2/EMSIP precipitation products. The permafrost stability data spatial resolution is 1km and represents the status around 2010. The following table is the permafrost stability classification system. The data format is Arcgis Raster.
RAN Youhua
Mean annual ground temperature (MAGT) at a depth of zero annual amplitude and permafrost thermal stability type are fundamental importance for engineering planning and design, ecosystem management in permafrost region. This dataset is produced by integrating remotely sensed freezing degree-days and thawing degree-days, snow cover days, leaf area index, soil bulk density, high-accuracy soil moisture data, and in situ MAGT measurements from 237 boreholes for the 2010s (2005-2015) on the Tibetan Plateau (TP) by using an ensemble learning method that employs a support vector regression (SVR) model based on distance-blocked resampling training data with 200 repetitions. Validation of the new permafrost map indicates that it is probably the most accurate of all available maps at present. The RMSE of MAGT is approximately 0.75 °C and the bias is approximately 0.01 °C. This map shows that the total area of permafrost on the TP is approximately 115.02 (105.47-129.59) *104 km2. The areas corresponding to the very stable, stable, semi-stable, transitional, and unstable types are 0.86*104 km2, 9.62*104 km2, 38.45*104 km2, 42.29*104 km2, and 23.80*104 km2, respectively. This new dataset is available for evaluate the permafrost change in the future on the TP as a baseline. More details can be found in Ran et al., (2020) that published at Science China Earth Sciences.
RAN Youhua LI Xin
This data is a 5km monthly hydrological data set, including grid runoff and evaporation (if evaporation is less than 0, it means condensation; if runoff is less than 0, it means precipitation is less than evaporation). This data is a 5km monthly hydrological data set, including grid runoff and evaporation (if evaporation is less than 0, it means condensation; if runoff is less than 0, it means precipitation is less than evaporation).
WANG Lei