This data set is the data set of climate elements in Hoh Xil area of Qinghai Province, covering the data of 14 observation stations, recording the climate observation data in 1990 in detail. Hoh Xil area in Qinghai Province has a high terrain with an average altitude of over 5000m. The climate is cold, the air is thin and the natural environment is bad. The vast area is still no man's land, known as "forbidden zone for human beings". Due to less interference from human activities, most of the area still maintains its original natural state. Its special geographical location, crustal structure and natural environment, as well as the unique composition of the biological flora, have been the focus of domestic surgical circles. The original data of the data set is digitized from the book "natural environment of Hoh Xil, Qinghai Province". The climate observation data include solar radiation, temperature, precipitation, air pressure, wind speed, etc. This data set provides basic data for the study of Hoh Xil area in Qinghai Province, and has reference value for the research in related fields.
LI Bingyuan
1) Data content (including elements and significance): 21 stations (Southeast Tibet station, Namucuo station, Zhufeng station, mustag station, Ali station, Naqu station, Shuanghu station, Geermu station, Tianshan station, Qilianshan station, Ruoergai station (northwest courtyard), Yulong Xueshan station, Naqu station (hanhansuo), Haibei Station, Sanjiangyuan station, Shenzha station, gonggashan station, Ruoergai station( Chengdu Institute of biology, Naqu station (Institute of Geography), Lhasa station, Qinghai Lake Station) 2018 Qinghai Tibet Plateau meteorological observation data set (temperature, precipitation, wind direction and speed, relative humidity, air pressure, radiation and evaporation) 2) Data source and processing method: field observation at Excel stations in 21 formats 3) Data quality description: daily resolution of the site 4) Data application results and prospects: Based on long-term observation data of various cold stations in the Alpine Network and overseas stations in the pan-third pole region, a series of datasets of meteorological, hydrological and ecological elements in the pan-third pole region were established; Strengthen observation and sample site and sample point verification, complete the inversion of meteorological elements, lake water quantity and quality, above-ground vegetation biomass, glacial frozen soil change and other data products; based on the Internet of Things technology, develop and establish multi-station networked meteorological, hydrological, Ecological data management platform, real-time acquisition and remote control and sharing of networked data.
ZHU Liping, PENG Ping
The temporal resolution of temperature and radiation data in Central Asia is monthly scale, and the spatial resolution is 0.5 degree and 0.05 degree, respectively. The GCS_WGS_1984 projection coordinate system was used. Among them, the downward short wave radiation, air temperature and vapor pressure data of GLDAS, surface temperature / emissivity data of MOD11C3, surface albedo data of MCD43C3 and ASTER_GEDv4.1 are used for radiation data calculation; the temperature data was calculated by MOD06_ L2 cloud products and MOD07_ L2 atmospheric profile data was calculated. This data is based on the advanced remote sensing algorithm and makes full use of the current high-precision remote sensing data and products, which is different from the traditional climate model for the estimation of climate elements. The data can be used to analyze the spatial and temporal variation characteristics of water resources in Central Asia, analyze the supply-demand relationship of agricultural water resources and evaluate the development potential of water resources.
Jinxi SONG, Xiaohui JIANG
The spatial-temporal distribution map of topographic shadows in the upper reaches of Heihe River (2018), which is calculated based on the SRTM DEM and the solar position (http://www.esrl.noaa.gov/gmd/grad/solcalc/azel.html). The spatial resolution is 100 m and the time resolution is 15 min. The datased can be used in the fields of ecological hydrology and remote sensing research. Using the observed solar radiation at several automatic weather stations in the upper reaches of Heihe River, the accuracy of the calculation results is verified. Results show that the dataset can accurately capture the temporal and spatial changes of the topographic shadow at the stations, and the time error is within 20 minutes.
ZHANG Yanlin
The dataset is a nearly 36-year (1983.7-2018.12) high-resolution (3 h, 10 km) global SSR (surface solar radiation) dataset, which can be used for hydrological modeling, land surface modeling and engineering application. The dataset was produced based on ISCCP-HXG cloud products, ERA5 reanalysis data, and MODIS aerosol and albedo products with an improved physical parameterization scheme. Validation and comparisons with other global satellite radiation products indicate that our SSR estimates were generally better than those of the ISCCP flux dataset (ISCCP-FD), the global energy and water cycle experiment surface radiation budget (GEWEX-SRB), and the Earth's Radiant Energy System (CERES). This SSR dataset will contribute to the land-surface process simulations and the photovoltaic applications in the future. The unit is W/㎡, instantaneous value.
TANG Wenjun
The total solar radiation and the total radiation of absorption and scattering material attenuation are measured by the international general solar radiation meter (li200sz, li-cor, Inc., USA). The measured data are total solar radiation, including direct and diffuse solar radiation, with a wavelength range of 400-1100nm. The unit of measurement is w / m2, and the typical error is ± 3% (incidence angle is within 60 °) under natural lighting. The data of sodankyl ä station in the Arctic comes from cooperation with the site and website download. The coverage time of sodankyl ä station in the Arctic is updated to 2018.
BAI Jianhui
This dataset is the spatial distribution map of the marshes in the source area of the Yellow River near the Zaling Lake-Eling Lake, covering an area of about 21,000 square kilometers. The data set is classified by the Landsat 8 image through an expert decision tree and corrected by manual visual interpretation. The spatial resolution of the image is 30m, using the WGS 1984 UTM projected coordinate system, and the data format is grid format. The image is divided into five types of land, the land type 1 is “water body”, the land type 2 is “high-cover vegetation”, the land type 3 is “naked land”, and the land type 4 is “low-cover vegetation”, and the land type 5 is For "marsh", low-coverage vegetation and high-coverage vegetation are distinguished by vegetation coverage. The threshold is 0.1 to 0.4 for low-cover vegetation and 0.4 to 1 for high-cover vegetation.
YANG Kun
This dataset includes data recorded by the Cold and Arid Research Network of Lanzhou university obtained from an observation system of Meteorological elements gradient of Dunhuang Station from January 1 to December 31, 2018. The site (93.708° E, 40.348° N) was located on a wetland in the Dunhuang west lake, Gansu Province. The elevation is 990 m. The installation heights and orientations of different sensors and measured quantities were as follows: air temperature and humidity profile (4m and 8 m, towards north), wind speed and direction profile (windsonic; 4m and 8 m, towards north), air pressure (1 m), rain gauge (4 m), infrared temperature sensors (4 m, towards south, vertically downward), soil heat flux (-0.05 and -0.1m ), soil soil temperature/ moisture/ electrical conductivity profile (below the vegetation in the south of tower, -0.05 and -0.2 m), photosynthetically active radiation (4 m, towards south), four-component radiometer (4 m, towards south), sunshine duration sensor(4 m, towards south). The observations included the following: air temperature and humidity (Ta_4 m, Ta_8 m; RH_2 m, RH_4 m, RH_8 m) (℃ and %, respectively), wind speed (Ws_4 m, Ws_8 m) (m/s), wind direction (WD_4 m, WD_8 m) (°), air pressure (press) (hpa), precipitation (rain) (mm), four-component radiation (DR, incoming shortwave radiation; UR, outgoing shortwave radiation; DLR_Cor, incoming longwave radiation; ULR_Cor, outgoing longwave radiation; Rn, net radiation) (W/m^2), infrared temperature (IRT) (℃), photosynthetically active radiation (PAR) (μmol/ (s m-2)), soil heat flux (Gs_0.05m, Gs_0.1m) (W/m^2), soil temperature (Ts_0.05m, Ts_0.2m) (℃), soil moisture (Ms_0.05m, Ms_0.2m) (%, volumetric water content), soil conductivity (Ec_0.05m, Ec_0.2m)(μs/cm), sun time(h). The data processing and quality control steps were as follows: (1) The AWS data were averaged over intervals of 10 min for a total of 144 records per day. The data were missing during Jan. 23 to Jan. 24 because of collector failure; the data during Mar. 17 and May 24 were wrong because of the tower body tilt; The air humidity data were rejected due to program error. (2) Data in duplicate records were rejected. (3) Unphysical data were rejected. (4) The data marked in red are problematic data. (5) The format of the date and time was unified, and the date and time were collected in the same column, for example, date and time: 2018-6-10 10:30.
ZHAO Changming, ZHANG Renyi
The China Meteorological Forcing Dataset (CMFD) is a high spatial-temporal resolution gridded near-surface meteorological dataset that was developed specifically for studies of land surface processes in China. The dataset was made through fusion of remote sensing products, reanalysis dataset and in-situ observation data at weather stations. Its record starts from January 1979 and keeps extending (currently up to December 2018) with a temporal resolution of three hours and a spatial resolution of 0.1°. Seven near-surface meteorological elements are provided in CMFD, including 2-meter air temperature, surface pressure, specific humidity, 10-meter wind speed, downward shortwave radiation, downward longwave radiation and precipitation rate.
YANG Kun, HE Jie
This data set contains the data of meteorological elements observed in the pass station upstream of heihewen meteorological observation network on January 1, 2015 and December 31, 2015.The site is located in da dong shu pass, qilian county, qinghai province.The longitude and latitude of the observation point are 100.2421E, 38.0142N, and the altitude is 4148m.Data including two observation points, all in pass observatory, located about 10 m, a set of continuous observation in 2015 (30 min output), another set for September 18, 2015 in 10 m high pass new stations (10 min), specific include: air temperature, relative humidity sensors at 5 m, toward the north (two sets of observation, 10 min and 30 min output);The barometer is installed in the skid-proof box on the ground (two groups of observation, 10min and 30min output respectively);The tipping bucket rain gauge is installed at 10m;The wind speed and direction sensor is mounted at 10m, facing due north (two groups, 10min and 30min output respectively).The four-component radiometer consists of two observation points, one is installed at the meteorological tower 6m, facing due south (10min output), and the other is installed on the support 1.5m above the ground (30min output).Two infrared thermometers are installed at 6m, facing south, with the probe facing vertically downward;The soil temperature probe was buried at 0cm on the surface and 4cm, 10cm, 20cm, 40cm, 80cm, 120cm and 160cm underground (the two groups were observed for 10min and 30min respectively).The soil moisture probe was buried in the ground at 4cm, 10cm, 20cm, 40cm, 80cm, 120cm and 160cm (the two groups were observed for 10min and 30min respectively).The soil heat flow plate was buried 6cm underground (observed in two groups, 10min (3 heat flow plates) and 30min (2 heat flow plates)). Observation projects are: air temperature and humidity (Ta_5m, RH_5m) (unit: c, percentage), pressure (Press) (unit: hundred mpa), precipitation (Rain) (unit: mm), wind speed (WS_10m) (unit: m/s), wind (WD_10m) (unit: degrees), the radiation of four component (DR, UR, DLR_Cor, ULR_Cor, Rn) (unit: watts per square meter), the surface radiation temperature (IRT_1, IRT_2) (unit:C), soil heat flux (Gs_1, Gs_2, Gs_3) (unit: wattage/m2), soil temperature (Ts_0cm, Ts_4cm, Ts_10cm, Ts_20cm, Ts_40cm, Ts_80cm, Ts_120cm, Ts_160cm) (unit: water content by volume, percentage). Processing and quality control of observation data :(1) 144 or 48 data per day (every 10min or 30min) should be ensured.The four-component long-wave radiation output of 30min was between January 1, 2015 and January 1, 2015.The observation data was lost between 5.24 and 7.12 after 30min due to the collector problem.(2) eliminate the moments with duplicate records;(3) data that obviously exceeds the physical significance or the range of the instrument is deleted;(4) the part marked with red letters in the data is questionable data;(5) the format of date and time is uniform, and the date and time are in the same column.For example, the time is: 2015-9-10 10:30;(6) naming rules: AWS+ site name. For information of hydrometeorological network or site, please refer to Li et al. (2013), and for data processing, please refer to Liu et al. (2011).
CHE Tao, LIU Shaomin, LI Xin, XU Ziwei, ZHANG Yang, TAN Junlei
The data set contains the meteorological element observation data of ebao station in the upper reaches of heihe hydrometeorological observation network on January 1, 2015 and December 31, 2016.The station is located in ebao town, qilian county, qinghai province.The longitude and latitude of the observation point are 100.9151E, 37.9492N, and the altitude is 3294m.The air temperature and relative humidity sensor is set up at 5m, facing due north.The barometer is installed in the anti-skid box on the ground;The tipping bucket rain gauge is installed at 10m;The wind speed and direction sensor is mounted at 10m, facing due north;The four-component radiometer is installed at 6m, facing due south;Two infrared thermometers are installed at 6m, facing south, with the probe facing vertically downward;The soil temperature probe is buried at the surface of 0cm and underground of 4cm, 10cm, 20cm, 40cm, 80cm, 120cm and 160cm, 2m south of the meteorological tower.The soil moisture probe is buried underground at 4cm, 10cm, 20cm, 40cm, 80cm, 120cm and 160cm, 2m south of the meteorological tower.The soil heat flow plates (3 pieces) are successively buried 6cm underground, 2m south of the meteorological tower. Observation projects are: air temperature and humidity (Ta_5m, RH_5m) (unit: c, percentage), pressure (Press) (unit: hundred mpa), precipitation (Rain) (unit: mm), wind speed (WS_10m) (unit: m/s), wind (WD_10m) (unit: degrees), the radiation of four component (DR, UR, DLR_Cor, ULR_Cor, Rn) (unit: watts per square meter), the surface radiation temperature (IRT_1, IRT_2) (unit:C), soil heat flux (Gs_1, Gs_2, Gs_3) (unit: wattage/m2), soil temperature (Ts_0cm, Ts_4cm, Ts_10cm, Ts_20cm, Ts_40cm, Ts_80cm, Ts_120cm, Ts_160cm) (unit: water content by volume, percentage). Processing and quality control of observation data :(1) 144 data per day (every 10min) should be ensured.The four-component radiation and infrared temperature were between October 11, 2015 and November 5, 2015.The instrument of the observation tower was re-adjusted between 11.1 and 11.5, and the data was missing;(2) eliminate the moments with duplicate records;(3) data that obviously exceeds the physical significance or the range of the instrument is deleted;(4) the part marked with red letters in the data is questionable data;(5) the format of date and time is uniform, and the date and time are in the same column.For example, the time is: 2015-9-10 10:30;(6) naming rules: AWS+ site name. For information of hydrometeorological network or site, please refer to Li et al. (2013), and for data processing, please refer to Liu et al. (2011).
CHE Tao, LIU Shaomin, LI Xin, XU Ziwei, ZHANG Yang, TAN Junlei
This data set contains the data of eddy correlation instrument observation in the upstream pass station of heihe hydrological and meteorological observation network on January 1, 2015 and December 31, 2017.The site is located in qilian county, qinghai province.The longitude and latitude of the observation point are 100.2421, 38.0142N and 4148 m above sea level.The height of the vortex correlation instrument is 3.2m, the sampling frequency is 10Hz, the ultrasonic orientation is due north, and the distance between the ultrasonic wind speed and temperature instrument (CSAT3) and the CO2/H2O analyzer (Li7500A) is 15cm. The original observation data of the vortex correlator is 10Hz, and the published data are the 30-minute data processed by Eddypro. The main steps of the processing include: elimination of outliers, correction of delay time, coordinate rotation (quadratic coordinate rotation), frequency response correction, ultrasonic virtual temperature correction and density (WPL) correction, etc.Quality assessment for each intercompared to at the same time, mainly is the atmospheric stability (Δ st) and turbulent characteristics of similarity (ITC) test.The 30min flux value output by Eddypro software was also screened :(1) to eliminate the data in case of instrument error;(2) data of 1h before and after precipitation were removed;(3) data with a miss rate of more than 10% per 30min in 10Hz original data were excluded;(4) observation data of weak turbulence at night (u* less than 0.1m/s) were excluded.The average period of observation data was 30 minutes, with 48 data in a day, and the missing data was marked as -6999.Suspect data caused by instrument drift and other reasons are marked in red font.The eddy current correlator will be short of power at night in winter, which leads to the loss of data.When 10Hz data is missing due to the storage card data problem (1.12-3.14,10.7-12.31), the data is replaced by the 30min flux data output by the collector. The published observations include:Date/Time for the Date/Time, wind Wdir (°), Wnd horizontal wind speed (m/s), standard deviation Std_Uy lateral wind speed (m/s), ultrasonic virtual temperature Tv (℃), the water vapor density H2O (g/m3), carbon dioxide concentration CO2 (mg/m3), friction velocity Ustar) (m/s), Mr. Hoff length L (m), sensible heat flux Hs (W/m2), latent heat flux LE (W/m2), carbon dioxide flux Fc (mg/(m2s)), the quality of the sensible heat flux identifier QA_Hs, the quality of the latent heat flux identifier QA_LE,Mass identification of co2 flux.The quality of the sensible heat and latent heat, carbon dioxide flux identification is divided into three (quality id 0: (Δ st < 30, the ITC < 30);1: (Δ st < 100, ITC < 100);The rest is 2).The meaning of data time, for example, 0:30 represents the average of 0:00-0:30;The data is stored in *.xls format. For information of hydrometeorological network or site, please refer to Li et al. (2013), and for data processing, please refer to Liu et al. (2011).
CHE Tao, LIU Shaomin, LI Xin, XU Ziwei, ZHANG Yang, TAN Junlei
This data set contains the eddy correlation observation data of arou super station upstream of heihe hydrological and meteorological observation network on January 1, 2015 and December 31, 2017.Site is located in qilian county, qinghai province, arou township grass daban village, the underlying surface is alpine grassland.The longitude and latitude of the observation point are 100.4643E, 38.0473N, and the altitude is 3033m.The height of the vortex correlative instrument is 3.5m, the sampling frequency is 10Hz, the ultrasonic orientation is due north, and the distance between the ultrasonic wind speed temperature meter (CSAT3) and the CO2/H2O analyzer (Li7500A) is 15cm. The original observation data of the vortex correlator is 10Hz, and the published data are the 30-minute data processed by Eddypro. The main steps of the processing include: elimination of outliers, correction of delay time, coordinate rotation (quadratic coordinate rotation), frequency response correction, ultrasonic virtual temperature correction and density (WPL) correction, etc.Quality assessment for each intercompared to at the same time, mainly is the atmospheric stability (Δ st) and turbulent characteristics of similarity (ITC) test.The 30min flux value output by Eddypro software was also screened :(1) to eliminate the data in case of instrument error;(2) data of 1h before and after precipitation were removed;(3) data with a miss rate of more than 10% per 30min in 10Hz original data were excluded;(4) observation data of weak turbulence at night (u* less than 0.1m/s) were excluded.The average period of observation data was 30 minutes, with 48 data in a day, and the missing data was marked as -6999.Suspicious data caused by instrument drift and other reasons are marked with red font. Among them, calibration data of vortex system Li7500A on April 16-17 is missing.When the memory card fails to store data, resulting in the loss of 10Hz data (9.20-10.21,11.3-11.18), the data is replaced by the 30min flux data output by the collector. The published observations include:Date/Time for the Date/Time, wind Wdir (°), Wnd horizontal wind speed (m/s), standard deviation Std_Uy lateral wind speed (m/s), ultrasonic virtual temperature Tv (℃), the water vapor density H2O (g/m3), carbon dioxide concentration CO2 (mg/m3), friction velocity Ustar) (m/s), Mr. Hoff length L (m), sensible heat flux Hs (W/m2), latent heat flux LE (W/m2), carbon dioxide flux Fc (mg/(m2s)), the quality of the sensible heat flux identifier QA_Hs, the quality of the latent heat flux identifier QA_LE,Mass identification of co2 flux.The quality of the sensible heat and latent heat, carbon dioxide flux identification is divided into three (quality id 0: (Δ st < 30, the ITC < 30);1: (Δ st < 100, ITC < 100);The rest is 2).The meaning of data time, for example, 0:30 represents the average of 0:00-0:30;The data is stored in *.xls format. For information of hydrometeorological network or site, please refer to Li et al. (2013), and for data processing, please refer to Liu et al. (2011).
CHE Tao, LIU Shaomin, LI Xin, XU Ziwei, ZHANG Yang, TAN Junlei
The Tibetan Plateau (TP), acting as a large elevated land surface and atmospheric heat source during spring and summer, has a substantial impact on regional and global weather and climate. To explore the multi-scale temporal variation in the thermal forcing effect of the TP,The data set of atmospheric heat source/sink in Tibetan Plateau was prepared as a quantitative analysis tool for calculating heat budget of gas column. the atmospheric heat source/sink dataset consists of three variables: surface sensible heat flux SH, latent heat release LH and net radiation flux RC. here we calculated the surface sensible heat and latent heat release based on 6-h routine observations at 80 (32) meteorological stations during the period 1979–2016:air temperature at 1.5 m and surface temperature and wind speed at 10 m are used to calculate surface sensible heat flux,the latent heat release is estimated precipitation data.The satellite datasets used to calculate the net radiation flux were the Global Energy and Water Cycle Experiment surface radiation budget satellite radiation(GEWEX/SRB) and Clouds and Earth’s Radiant Energy Systems/Energy Balanced And Filled (CERES/EBAF). The monthly shortwave and longwave radiation fluxes at the surface and at the top of the atmosphere (TOA) in GEWEX/SRB and CERES/EBAF were utilized to obtain the net radiation flux for the period 1984–2015 via statistical methods。
DUAN Anmin
The data set contains the observed data of eddy covariance systemt in the upper reaches of heihe hydrometeorological observation network on January 1, 2015, solstice and December 25, 2017.The station is located in qilian county, qinghai province.The longitude and latitude of the observation point are 98.9406E, 38.8399N and 3739 m above sea level.The height of the vortex correlation instrument is 4.5m, the sampling frequency is 10Hz, the ultrasonic orientation is due north, and the distance between the ultrasonic wind speed and temperature instrument (CSAT3) and the CO2/H2O analyzer (Li7500) is 15cm. The original observation data of the vortex correlator is 10Hz, and the published data are the 30-minute data processed by Eddypro. The main steps of the processing include: elimination of outliers, correction of delay time, coordinate rotation (quadratic coordinate rotation), frequency response correction, ultrasonic virtual temperature correction and density (WPL) correction, etc.Quality assessment for each intercompared to at the same time, mainly is the atmospheric stability (Δ st) and turbulent characteristics of similarity (ITC) test.The 30min flux value output by Eddypro software was also screened :(1) to eliminate the data in case of instrument error;(2) data of 1h before and after precipitation were removed;(3) data with a miss rate of more than 10% per 30min in 10Hz original data were excluded;(4) observation data of weak turbulence at night (u* less than 0.1m/s) were excluded.The average period of observation data was 30 minutes, with 48 data in a day, and the missing data was marked as -6999.Suspect data caused by instrument drift and other reasons are marked in red font.Calibration of vortex system Li7500 on April 16-18, data missing;The CO2 concentration was abnormal after September 23, leading to errors in CO2 flux.When the memory card fails to store data, resulting in the loss of 10Hz data (1.8-3.8,7.23-9.13), the data is replaced by the 30min flux data output by the collector. The published observations include:Date/Time for the Date/Time, wind Wdir (°), Wnd horizontal wind speed (m/s), standard deviation Std_Uy lateral wind speed (m/s), ultrasonic virtual temperature Tv (℃), the water vapor density H2O (g/m3), carbon dioxide concentration CO2 (mg/m3), friction velocity Ustar) (m/s), Mr. Hoff length L (m), sensible heat flux Hs (W/m2), latent heat flux LE (W/m2), carbon dioxide flux Fc (mg/(m2s)), the quality of the sensible heat flux identifier QA_Hs, the quality of the latent heat flux identifier QA_LE,Mass identification of co2 flux.The quality of the sensible heat and latent heat, carbon dioxide flux identification is divided into three (quality id 0: (Δ st < 30, the ITC < 30);1: (Δ st < 100, ITC < 100);The rest is 2).The meaning of data time, for example, 0:30 represents the average of 0:00-0:30;The data is stored in *.xls format. For information of hydrometeorological network or site, please refer to Li et al. (2013), and for data processing, please refer to Liu et al. (2011).
CHE Tao, LIU Shaomin, LI Xin, XU Ziwei, ZHANG Yang, TAN Junlei
This data set contains a total of 717 files, among which the station.txt file mainly describes the site information of 716 stations. Each column corresponds to: longitude, latitude and elevation. The other 716 files named by the station number correspond to the data of 716 stations. The columns in the file are: year, month, day and daily average solar radiation. The data are based on the estimation of conventional meteorological observation elements by the China Meteorological Administration: temperature, humidity, pressure and sunshine hours. The estimation method is obtained by two models: an artificial neural network model and the Yang hybrid model. The Yang hybrid model takes into account the five decay processes of aerosol scattering and absorption, Rayleigh scattering, water vapor absorption, ozone absorption and uniformly mixed gas absorption in clear weather. The influence of clouds on radiation is parameterized by the sunshine hours in cloudy days. The artificial neural network model, however, uses the ANN model to establish the relationship between radiation and ground conventional meteorological variables at each radiating station. Because the accuracy of the model of the artificial neural network is higher than that of the Yang hybrid model, the estimated value of the model of the artificial neural network is used to dynamically correct the estimated value of the Yang hybrid model on a monthly scale, and the data set is finally obtained.
TANG Wenjun
The near surface atmospheric forcing and surface state dataset of the Tibetan Plateau was yielded by WRF model, time range: 2000-2010, space range: 25-40 °N, 75-105 °E, time resolution: hourly, space resolution: 10 km, grid number: 150 * 300. There are 33 variables in total, including 11 near surface atmospheric variables: temperature at 2m height on the ground, specific humidity at 2m height on the ground, surface pressure, latitudinal component of 10m wind field on the ground, longitudinal component of 10m wind field on the ground, proportion of solid precipitation, cumulative cumulus convective precipitation, cumulative grid precipitation, downward shortwave radiation flux at the surface, downward length at the surface Wave radiation flux, cumulative potential evaporation. There are 19 surface state variables: soil temperature in each layer, soil moisture in each layer, liquid water content in each layer, heat flux of snow phase change, soil bottom temperature, surface runoff, underground runoff, vegetation proportion, surface heat flux, snow water equivalent, actual snow thickness, snow density, water in the canopy, surface temperature, albedo, background albedo, lower boundary Soil temperature, upward heat flux (sensible heat flux) at the surface and upward water flux (sensible heat flux) at the surface. There are three other variables: longitude, latitude and planetary boundary layer height.
PAN Xiaoduo
Photosynthetic effective radiation absorption coefficient photosynthetically active radiation component is an important biophysical parameter. It is an important land characteristic parameter of ecosystem function model, crop growth model, net primary productivity model, atmosphere model, biogeochemical model and ecological model, and is an ideal parameter for estimating vegetation biomass. The data set contains the data of photosynthetically active radiation absorption coefficient in Qinghai Tibet Plateau, with spatial resolution of 500m, temporal resolution of 8D, and time coverage of 2000, 2005, 2010 and 2015. The data source is MODIS Lai / FPAR product data mod15a2h (C6) on NASA website. The data are of great significance to the analysis of vegetation ecological environment in the Qinghai Tibet Plateau.
FANG Huajun, Ranga Myneni
This dataset is derived from the Nagqu Station of Plateau Climate and Environment (31.37N, 91.90E, 4509 a.s.l), Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences. The ground is flat, with open surrounding terrain. An uneven growth of alpine steppe, with a height of 3–20 cm. The observation time of this dataset is from January 1, 2014 to December 31, 2017. The observation elements primarily included the wind speed, air temperature, air relative humidity, air pressure, downward shortwave radiation, precipitation, evaporation, latent heat flux and CO2 flux. The precipitation , evaporation and CO2 flux data are daily cumulative values, and the other variables are daily average values. The observed data are generally continuous, but some data are missing due to power supply failure, and the missing data in this dataset are marked as NAN.
HU Zeyong, GU Lianglei, SUN Fanglei, WANG Shujin
1. Data content: air temperature, relative humidity, precipitation, air pressure, wind speed, average total radiation, total net radiation value and daily average water vapor pressure data. 2. Data source and processing method: Observed by American campel high-altitude automatic weather station, air temperature and humidity sensor model HMP155A; wind speed and wind direction model: 05103-45; net radiometer: CNR 4 Net Radiometer four component; atmospheric pressure sensor: CS106; Rain gauge: TE525MM. The automatic weather station automatically collects data every 10 minutes, and collects daily statistical data to obtain daily average weather data. 3. Data quality description: Data is automatically acquired continuously. 4. Data application results and prospects: The weather station is located in the middle of the glacier, and the meteorological data can provide data guarantee for simulating the response of oceanic glacier changes to global climate change in the context of future climate change.
LIU Jing