This data set includes apatite and zircon (U-Th) / He ages, apatite fission-track (AFT) ages of the Yalong River thrust belt, which will be continuously updated in the future. The first part is the apatite and zircon He and apatite fission-track data from the Yunongxi fault, a branch fault in the hinterland of the Yalong River thrust belt. The second part of the data is from the Jinping Shan-Muli fault, a branch of the Yalong River thrust belt, including apatite and zircon He ages data. The data results are concentrated, which well constrain the evolution of the Yalong River thrust belt and provide a high-quality chronological basis for exploring its role in the process of plateau expansion.
ZHANG Huiping
Based on the vulnerability assessment framework of "exposure sensitivity adaptability", the vulnerability assessment index system of agricultural and pastoral areas in Qinghai Tibet Plateau was constructed. The index system data includes meteorological data, soil data, vegetation data, terrain data and socio-economic data, with a total of 12 data indicators, mainly from the national Qinghai Tibet Plateau scientific data center and the resource and environmental science data center of the Chinese Academy of Sciences. Based on the questionnaire survey of six experts in related fields, the weight of the indicators is determined by using the analytic hierarchy process (AHP). Finally, four 1km grid data are formed involving ecological exposure, sensitivity, adaptability and ecological vulnerability in the agricultural and pastoral areas of the Qinghai Tibet Plateau. The data can provide a reference for the identification of ecological vulnerable areas in the Qinghai Tibet Plateau.
ZHAN Jinyan TENG Yanmin LIU Shiliang
In November 2020, we made a collection in Qinghai Tibet Plateau were collected by net and electric capture methods, and the sampling area included the main water systems in Qinghai Province. A total of 30 sampling points were collected, and 685 fish specimens were collected in 12 points, including Schizothorax of loach.This work is a part of the project of “Building Methods for Detection of Aquatic Organisms in the Lake System of the Qinghai-Tibet Plateau”, using traditional fish survey data to generate a list of species in the lake system, which will then be used to combine multiple lakes in the plateau. High-throughput molecular data acquired from the system's environmental water samples and tested for visual parameters (lake size, isolation, geographic location, and spectral characteristics) that can be used to predict aquatic biodiversity.
LIU Shuwei
From October to November 2020, we used both live traps and camera traps to collect mammal diversity and distributions along the elevational gradients at the Yarlung Zangbo Grand Canyon National Nature Reserve. We set trap lines for small mammals inventory, with a total of 8000 live trap nights. We collected 526 individuals and1052 tissue samples of small mammals during the field sampling. We also retrived images of 130 camera traps placed between May 2020 and October 2020. We obtained 4218 pictures of wild animals,25 species of large and medium mammals were recorded.. The camera traps were reset in the same locations after renew batteries and memory cards. Small mammal data consist of richness, abundance, traits, environmental gradients etc, and could be used to model relationship between environmental gradients and traits concatenated by richness matrix. Camera trap data could inventory endangered species in the region, and provide information to identify biodiversity hotspots and conservation priorities.
LI Xueyou
This dataset includes the observation data from 01 Jan. 2019 through 31 Dec. 2018, collected by lysimeters, which are located at 115.788 E, 40.349 N and 480 m above sea level, near the Huailai Station in East Garden Town, Huailai County, Hebei Province. The land cover around the station was maize crop. The weighable lysimeter was built by UMS GmbH (Germany), with a surface area of 1m2, and a soil column of 1.5 m high. The original data sampling frequency was 1 Hz, and then averaged to 10min for distribution. The precision of the weighing data is 10g (equivalent to 0.01mm). During the crop growth period, a lysimeter is covered by bare soil and another one is covered by planted maize. The soil moisture, temperature and soil water potential sensors are installed both inside and outside of the lysimeter to ensure that the water cycle in the soil column is consistent with that of the field. Different sensors are located at different depths: 5, 50, 100 cm for soil temperature sensors, and 5, 10, 30, 50, 100 cm for soil moisture sensors, and 30 and 140cm for soil water potential sensors (the tensionmeter here can also measure soil temperature at 30, 140 cm). The soil heat flux plates in both lysimeters are buried at 10cm depth. The data processes and quality control according to: 1) ensuring there were 144 data every day, the lost data were replaced by -6999; 2) deleting the abnormal data; 3) deleting the outlier data; 4) keeping the consistent date and time format (e.g.2018-6-10 10:30). The distributed data include the following variables: Date-Time, Weight (I.L_1_WAG_L_000(Kg), I.L_2_WAG_L_000(Kg)), Drainage Weight (I.L_1_WAG_D_000(Kg), I.L_2_WAG_D_000(Kg)), Soil Heat Flux (Gs_1_10cm, Gs_2_10cm) (W/m2), Soil Moisture (Ms_1_5cm, Ms_1_10cm, Ms_1_30cm, Ms_1_50cm, Ms_1_100cm, Ms_2_5cm, Ms_2_10cm, Ms_2_30cm, Ms_2_50cm, Ms_2_100cm) (%), Soil Temperature (Ts_1_5cm , Ts_1_30cm, Ts_1_50cm, Ts_1_100cm, Ts_1_140cm, Ts_2_5cm , Ts_2_30cm, Ts_2_50cm, Ts_2_100cm, Ts_2_140cm) (C), Soil Water Potential (TS_1_30(hPa), TS_1_140(hPa), TS_2_30(hPa), TS_2_140(hPa)). The format of datasets was *.xls.
LIU Shaomin ZHU Zhongli XU Ziwei
This dataset includes the observation data from 01 Jan. 2019 through 31 Dec. 2019, collected by lysimeters, which are located at 115.788E, 40.349N and 480 m above sea level, near the Huailai Station in East Garden Town, Huailai County, Hebei Province. The land cover around the station was maize crop. The weighable lysimeter was built by UMS GmbH (Germany), with a surface area of 1m2, and a soil column of 1.5 m high. The original data sampling frequency was 1 Hz, and then averaged to 10min for distribution. The precision of the weighing data is 10g (equivalent to 0.01mm). During the crop growth period, a lysimeter is covered by bare soil and another one is covered by planted maize. The soil moisture, temperature and soil water potential sensors are installed both inside and outside of the lysimeter to ensure that the water cycle in the soil column is consistent with that of the field. Different sensors are located at different depths: 5, 50, 100 cm for soil temperature sensors, and 5, 10, 30, 50, 100 cm for soil moisture sensors, and 30 and 140cm for soil water potential sensors (the tensionmeter here can also measure soil temperature at 30, 140 cm). The soil heat flux plates in both lysimeters are buried at 10cm depth. The data processes and quality control according to: 1) ensuring there were 144 data every day, the lost data were replaced by -6999; 2) deleting the abnormal data; 3) deleting the outlier data; 4) keeping the consistent date and time format (e.g. 2019-01-01 10:30). The distributed data include the following variables: Date-Time, Weight (I.L_1_WAG_L_000(Kg), I.L_2_WAG_L_000(Kg)), Drainage Weight (I.L_1_WAG_D_000(Kg), I.L_2_WAG_D_000(Kg)), Soil Heat Flux (Gs_1_10cm, Gs_2_10cm) (W/m2), Soil Moisture (Ms_1_5cm, Ms_1_10cm, Ms_1_30cm, Ms_1_50cm, Ms_1_100cm, Ms_2_5cm, Ms_2_10cm, Ms_2_30cm, Ms_2_50cm, Ms_2_100cm) (%), Soil Temperature (Ts_1_5cm , Ts_1_30cm, Ts_1_50cm, Ts_1_100cm, Ts_1_140cm, Ts_2_5cm , Ts_2_30cm, Ts_2_50cm, Ts_2_100cm, Ts_2_140cm) (C), Soil Water Potential (TS_1_30(hPa), TS_1_140(hPa), TS_2_30(hPa), TS_2_140(hPa)). The format of datasets was *.xls.
LIU Shaomin ZHU Zhongli XU Ziwei
1) Data content: Paleomagnetic data, magnetic index data, major element percentage data and chemical weathering index can establish the paleomagnetic age framework of the Dahonggou section and restore the precipitation change and chemical weathering history in geological history. 2) Data sources and processing methods The data source is experimental data. Paleomagnetic data: a cylindrical sample of 2x2x2cm was drilled with a small gasoline drill and measured with a low-temperature superconducting magnetometer in a magnetic shielding room. Magnetic data: the samples collected in the field were ground into fine particles by mortar and put into 2x2x2 non-magnetic plastic box, and tested by kappa bridge susceptibility meter, pulse magnetometer and rotating magnetometer. Mass percentage content and chemical weathering index data of major elements in the whole sample and particle size fraction: firstly, the whole sample and particle size fraction sample were pretreated with acetic acid and hydrogen peroxide to remove carbonate and organic matter, and then pressed into a round cake with a diameter of about 4cm and a thickness of about 8mm by a pressure apparatus, and finally XRF fluorescence analysis was carried out. 3) Data quality The sample collection and experimental processing are carried out according to strict standards, and the data quality is reliable. 4) Data application achievements and Prospects Three SCI papers were published using this set of data, one of which is Ni.
NIE Junsheng
The data include the Cenozoic plant fossils collected from Gansu, Qinghai and Yunnan by the Department of paleontology, School of Geological Sciences and mineral resources, Lanzhou University from 2019 to 2020. All the fossils were collected by the team members in the field and processed in the laboratory by conventional fossil restoration methods and cuticle experiment methods. The fossils are basically well preserved, some of which are horned The study of these plant fossils is helpful to understand the Cenozoic paleoenvironment, paleoclimate, paleogeographic changes and vegetation features of the eastern Qinghai Tibet Plateau.
YANG Tao
This dataset obtained from an observation system of Meteorological elements gradient of Huailai station from January 1 to December 31, 2019. The site (115.7923° E, 40.3574° N) was located on a cropland (maize surface) which is near Donghuayuan town of Huailai city, Hebei Province. The elevation is 480 m. The installation heights and orientations of different sensors and measured quantities were as follows: air temperature and humidity profile (3, 5, 10, 15, 20, 30, and 40 m, towards north), wind speed and direction profile (3, 5, 10, 15, 20, 30, and 40 m, towards north), air pressure (in the box), rain gauge (3 m, south of tower), four-component radiometer (4 m, south of tower), two infrared temperature sensors (4 m, south of tower, vertically downward), photosynthetically active radiation (4 m, south of tower, vertically upward), soil heat flux (3 duplicates, -0.06 m), a TCAV averaging soil thermocouple probe (-0.02, -0.04 m), soil temperature profile (-0.02, -0.04, -0.1, -0.2, -0.4, -0.8, -1.2, and -1.6 m), soil moisture profile (-0.02, -0.04, -0.1, -0.2, -0.4, -0.8, -1.2, and -1.6 m). The observations included the following: air temperature and humidity (Ta_3 m, Ta_5 m, Ta_10 m, Ta_15 m, Ta_20 m, Ta_30 m, and Ta_40 m; RH_3 m, RH_5 m, RH_10 m, RH_15 m, RH_20 m, RH_30 m, and RH_40 m) (℃ and %, respectively), wind speed (Ws_3 m, Ws_5 m, Ws_15 m, Ws_20 m, Ws_30 m, and Ws_40 m) (m/s), air pressure (press) (hpa), precipitation (rain) (mm), four-component radiation (DR, incoming shortwave radiation; UR, outgoing shortwave radiation; DLR_Cor, incoming longwave radiation; ULR_Cor, outgoing longwave radiation; Rn, net radiation) (W/m^2), infrared temperature (IRT_1 and IRT_2) (℃), photosynthetically active radiation (PAR) (μmol/ (s m-2)), average soil temperature (TCAV, ℃), soil heat flux (Gs_1, Gs_2, and Gs_3) (W/m^2), soil temperature (Ts_2 cm, Ts_4 cm, Ts_10 cm, Ts_20 cm, Ts_40 cm, Ts_80 cm, Ts_120 cm, and Ts_160 cm) (℃), soil moisture (Ms_2 cm, Ms_4 cm, Ms_10 cm, Ms_20 cm, Ms_40 cm, Ms_80 cm, Ms_120 cm, and Ms_160 cm) (%, volumetric water content). The data processing and quality control steps were as follows: (1) The AWS data were averaged over intervals of 10 min for a total of 144 records per day. The missing data were denoted by -6999. (2) Data in duplicate records were rejected. (3) Unphysical data were rejected. (4) The data marked in red are problematic data. (5) The format of the date and time was unified, and the date and time were collected in the same column, for example, date and time: 2019-6-10 10:30. Moreover, suspicious data were marked in red. For more information, please refer to Guo et al. (2020) (for sites information), Liu et al. (2013) for data processing) in the Citation section.
LIU Shaomin XIAO Qing XU Ziwei BAI Junhua
This dataset obtained from an observation system of Meteorological elements gradient of Huailai station from January 1 to December 31, 2018. The site (115.7923° E, 40.3574° N) was located on a cropland (maize surface) which is near Donghuayuan town of Huailai city, Hebei Province. The elevation is 480 m. The installation heights and orientations of different sensors and measured quantities were as follows: air temperature and humidity profile (3, 5, 10, 15, 20, 30, and 40 m, towards north), wind speed and direction profile (3, 5, 10, 15, 20, 30, and 40 m, towards north), air pressure (in the box), rain gauge (3 m, south of tower), four-component radiometer (4 m, south of tower), two infrared temperature sensors (4 m, south of tower, vertically downward), photosynthetically active radiation (4 m, south of tower, vertically upward), soil heat flux (3 duplicates, -0.06 m), a TCAV averaging soil thermocouple probe (-0.02, -0.04 m), soil temperature profile (-0.02, -0.04, -0.1, -0.2, -0.4, -0.8, -1.2, and -1.6 m), soil moisture profile (-0.02, -0.04, -0.1, -0.2, -0.4, -0.8, -1.2, and -1.6 m). The observations included the following: air temperature and humidity (Ta_3 m, Ta_5 m, Ta_10 m, Ta_15 m, Ta_20 m, Ta_30 m, and Ta_40 m; RH_3 m, RH_5 m, RH_10 m, RH_15 m, RH_20 m, RH_30 m, and RH_40 m) (℃ and %, respectively), wind speed (Ws_3 m, Ws_5 m, Ws_10 m, Ws_15 m, Ws_20 m, Ws_30 m, and Ws_40 m) (m/s), wind direction (WD_10 m) (°), air pressure (press) (hpa), precipitation (rain) (mm), four-component radiation (DR, incoming shortwave radiation; UR, outgoing shortwave radiation; DLR_Cor, incoming longwave radiation; ULR_Cor, outgoing longwave radiation; Rn, net radiation) (W/m^2), infrared temperature (IRT_1 and IRT_2) (℃), photosynthetically active radiation (PAR) (μmol/ (s m-2)), average soil temperature (TCAV, ℃), soil heat flux (Gs_1, Gs_2, and Gs_3) (W/m^2), soil temperature (Ts_2 cm, Ts_4 cm, Ts_10 cm, Ts_20 cm, Ts_40 cm, Ts_80 cm, Ts_120 cm, and Ts_160 cm) (℃), soil moisture (Ms_2 cm, Ms_4 cm, Ms_10 cm, Ms_20 cm, Ms_40 cm, Ms_80 cm, Ms_120 cm, and Ms_160 cm) (%, volumetric water content). The data processing and quality control steps were as follows: (1) The AWS data were averaged over intervals of 10 min for a total of 144 records per day. The missing data were denoted by -6999. (2) Data in duplicate records were rejected. (3) Unphysical data were rejected. (4) The data marked in red are problematic data. (5) The format of the date and time was unified, and the date and time were collected in the same column, for example, date and time: 2018-6-10 10:30. Moreover, suspicious data were marked in red. For more information, please refer to Guo et al. (2020) (for sites information), Liu et al. (2013) for data processing) in the Citation section.
LIU Shaomin XIAO Qing XU Ziwei BAI Junhua
This dataset contains the flux measurements from the Huailai station eddy covariance system (EC) from January 1 to October 24 in 2019. The site (115.7923° E, 40.3574°N) was located in the maize surface, near Donghuayuan town of Huailai city in Hebei Province. The elevation is 480 m. The EC was installed at a height of 3.5 m, and the sampling rate was 10 Hz. The sonic anemometer faced north, and the separation distance between the sonic anemometer and the CO2/H2O gas analyzer (CSAT3&EC150) was 0 m. The raw data acquired at 10 Hz were processed using the Eddypro post-processing software, including the spike detection, lag correction of H2O/CO2 relative to the vertical wind component, sonic virtual temperature correction, coordinate rotation (2-D rotation), corrections for density fluctuation (Webb-Pearman-Leuning correction), and frequency response correction. The EC data were subsequently averaged over 30 min periods. The observation data quality was divided into three classes according to the quality assessment method of stationarity (Δst) and the integral turbulent characteristics test (ITC): class 1 (level 0: Δst<30 and ITC<30), class 2 (level 1: Δst<100 and ITC<100), and class 3 (level 2: Δst>100 and ITC>100), which represent high-, medium-, and low-quality data, respectively. In addition to the above processing steps, the half-hourly flux data were screened in a four-step procedure: (1) data from periods of sensor malfunction were rejected; (2) data collected before or after 1 h of precipitation were rejected; (3) incomplete 30 min data were rejected when the missing data constituted more than 10% of the 30 min raw record; and (4) data were rejected at night when the friction velocity (u*) was less than 0.1 m/s. There were 48 records per day, and the missing data were replaced with -6999. Suspicious data were marked in red. There were lots of negative values of H2O density in winter where filling by -6999. The released data contained the following variables: data/time, wind direction (Wdir, °), wind speed (Wnd, m/s), the standard deviation of the lateral wind (Std_Uy, m/s), virtual temperature (Tv, ℃), H2O mass density (H2O, g/m3), CO2 mass density (CO2, mg/m3), friction velocity (ustar, m/s), stability (z/L), sensible heat flux (Hs, W/m2), latent heat flux (LE, W/m2), carbon dioxide flux (Fc, mg/ (m2s)), quality assessment of the sensible heat flux (QA_Hs), quality assessment of the latent heat flux (QA_LE), and quality assessment of the carbon flux (QA_Fc). In this dataset, the time of 0:30 corresponds to the average data for the period between 0:00 and 0:30; the data were stored in *.xls format. Detailed information can be found in the suggested references. For more information, please refer to Guo et al. (2020) (for sites information), Liu et al. (2013) for data processing) in the Citation section.
LIU Shaomin XIAO Qing XU Ziwei BAI Junhua
This dataset contains the flux measurements from the Huailai station eddy covariance system (EC) from January 1 to December 31 in 2018. The site (115.7923° E, 40.3574°N) was located in the maize surface, near Donghuayuan town of Huailai city in Hebei Province. The elevation is 480 m. The EC was installed at a height of 3.5 m, and the sampling rate was 10 Hz. The sonic anemometer faced north, and the separation distance between the sonic anemometer and the CO2/H2O gas analyzer (CSAT3&EC150) was 0 m. The raw data acquired at 10 Hz were processed using the Eddypro post-processing software, including the spike detection, lag correction of H2O/CO2 relative to the vertical wind component, sonic virtual temperature correction, coordinate rotation (2-D rotation), corrections for density fluctuation (Webb-Pearman-Leuning correction), and frequency response correction. The EC data were subsequently averaged over 30 min periods. The observation data quality was divided into three classes according to the quality assessment method of stationarity (Δst) and the integral turbulent characteristics test (ITC): class 1 (level 0: Δst<30 and ITC<30), class 2 (level 1: Δst<100 and ITC<100), and class 3 (level 2: Δst>100 and ITC>100), which represent high-, medium-, and low-quality data, respectively. In addition to the above processing steps, the half-hourly flux data were screened in a four-step procedure: (1) data from periods of sensor malfunction were rejected; (2) data collected before or after 1 h of precipitation were rejected; (3) incomplete 30 min data were rejected when the missing data constituted more than 10% of the 30 min raw record; and (4) data were rejected at night when the friction velocity (u*) was less than 0.1 m/s. There were 48 records per day, and the missing data were replaced with -6999. Suspicious data were marked in red. There were lots of negative values of H2O density in winter where filling by -6999. The released data contained the following variables: data/time, wind direction (Wdir, °), wind speed (Wnd, m/s), the standard deviation of the lateral wind (Std_Uy, m/s), virtual temperature (Tv, ℃), H2O mass density (H2O, g/m3), CO2 mass density (CO2, mg/m3), friction velocity (ustar, m/s), stability (z/L), sensible heat flux (Hs, W/m2), latent heat flux (LE, W/m2), carbon dioxide flux (Fc, mg/ (m2s)), quality assessment of the sensible heat flux (QA_Hs), quality assessment of the latent heat flux (QA_LE), and quality assessment of the carbon flux (QA_Fc). In this dataset, the time of 0:30 corresponds to the average data for the period between 0:00 and 0:30; the data were stored in *.xls format. Detailed information can be found in the suggested references. For more information, please refer to Guo et al. (2020) (for sites information), Liu et al. (2013) for data processing) in the Citation section.
LIU Shaomin XIAO Qing XU Ziwei BAI Junhua
This dataset contains the flux measurements from the Huailai station eddy covariance system (EC) from January 1 to December 3 in 2019. The site (115.7880° E, 40.3491° N) was located in the maize surface, near Donghuayuan town of Huailai city in Hebei Province. The elevation is 480 m. The EC was installed at a height of 5 m, and the sampling rate was 10 Hz. The sonic anemometer faced north, and the separation distance between the sonic anemometer and the CO2/H2O gas analyzer (CSAT3&Li7500A) was 0.15 m. The raw data acquired at 10 Hz were processed using the Eddypro post-processing software, including the spike detection, lag correction of H2O/CO2 relative to the vertical wind component, sonic virtual temperature correction, coordinate rotation (2-D rotation), corrections for density fluctuation (Webb-Pearman-Leuning correction), and frequency response correction. The EC data were subsequently averaged over 30 min periods. The observation data quality was divided into three classes according to the quality assessment method of stationarity (Δst) and the integral turbulent characteristics test (ITC): class 1 (level 0: Δst<30 and ITC<30), class 2 (level 1: Δst<100 and ITC<100), and class 3 (level 2: Δst>100 and ITC>100), which represent high-, medium-, and low-quality data, respectively. In addition to the above processing steps, the half-hourly flux data were screened in a four-step procedure: (1) data from periods of sensor malfunction were rejected; (2) data collected before or after 1 h of precipitation were rejected; (3) incomplete 30 min data were rejected when the missing data constituted more than 10% of the 30 min raw record; and (4) data were rejected at night when the friction velocity (u*) was less than 0.1 m/s. There were 48 records per day, and the missing data were replaced with -6999. The released data contained the following variables: data/time, wind direction (Wdir, °), wind speed (Wnd, m/s), the standard deviation of the lateral wind (Std_Uy, m/s), virtual temperature (Tv, ℃), H2O mass density (H2O, g/m3), CO2 mass density (CO2, mg/m3), friction velocity (ustar, m/s), stability (z/L), sensible heat flux (Hs, W/m2), latent heat flux (LE, W/m2), carbon dioxide flux (Fc, mg/ (m2s)), quality assessment of the sensible heat flux (QA_Hs), quality assessment of the latent heat flux (QA_LE), and quality assessment of the carbon flux (QA_Fc). In this dataset, the time of 0:30 corresponds to the average data for the period between 0:00 and 0:30; the data were stored in *.xls format. Detailed information can be found in the suggested references. For more information, please refer to Guo et al. (2020) (for sites information), Liu et al. (2013) for data processing) in the Citation section.
LIU Shaomin XU Ziwei
This dataset contains the flux measurements from the Huailai station eddy covariance system (EC) from January 1 to December 31 in 2018. The site (115.7880° E, 40.3491° N) was located in the maize surface, near Donghuayuan town of Huailai city in Hebei Province. The elevation is 480 m. The EC was installed at a height of 5 m, and the sampling rate was 10 Hz. The sonic anemometer faced north, and the separation distance between the sonic anemometer and the CO2/H2O gas analyzer (CSAT3&Li7500A) was 0.15 m. The raw data acquired at 10 Hz were processed using the Eddypro post-processing software, including the spike detection, lag correction of H2O/CO2 relative to the vertical wind component, sonic virtual temperature correction, coordinate rotation (2-D rotation), corrections for density fluctuation (Webb-Pearman-Leuning correction), and frequency response correction. The EC data were subsequently averaged over 30 min periods. The observation data quality was divided into three classes according to the quality assessment method of stationarity (Δst) and the integral turbulent characteristics test (ITC): class 1 (level 0: Δst<30 and ITC<30), class 2 (level 1: Δst<100 and ITC<100), and class 3 (level 2: Δst>100 and ITC>100), which represent high-, medium-, and low-quality data, respectively. In addition to the above processing steps, the half-hourly flux data were screened in a four-step procedure: (1) data from periods of sensor malfunction were rejected; (2) data collected before or after 1 h of precipitation were rejected; (3) incomplete 30 min data were rejected when the missing data constituted more than 10% of the 30 min raw record; and (4) data were rejected at night when the friction velocity (u*) was less than 0.1 m/s. There were 48 records per day, and the missing data were replaced with -6999. The released data contained the following variables: data/time, wind direction (Wdir, °), wind speed (Wnd, m/s), the standard deviation of the lateral wind (Std_Uy, m/s), virtual temperature (Tv, ℃), H2O mass density (H2O, g/m3), CO2 mass density (CO2, mg/m3), friction velocity (ustar, m/s), stability (z/L), sensible heat flux (Hs, W/m2), latent heat flux (LE, W/m2), carbon dioxide flux (Fc, mg/ (m2s)), quality assessment of the sensible heat flux (QA_Hs), quality assessment of the latent heat flux (QA_LE), and quality assessment of the carbon flux (QA_Fc). In this dataset, the time of 0:30 corresponds to the average data for the period between 0:00 and 0:30; the data were stored in *.xls format. Detailed information can be found in the suggested references. For more information, please refer to Guo et al. (2020) (for sites information), Liu et al. (2013) for data processing) in the Citation section.
LIU Shaomin XU Ziwei
This dataset includes data obtained from the automatic weather station (AWS) at the observation system of Meteorological elements of Huailai station between January 1 and December 31, 2019. The site (115.7880° E, 40.3491° N) was located on a maize surface, which is near Donghuayuan Town of Huailai city in Hebei Province. The elevation is 480 m. The installation heights and orientations of different sensors and measured quantities were as follows: air temperature and humidity profile (5 m, north), wind speed and direction profile (10 m, north), air pressure (in the box), rain gauge (10 m), four-component radiometer (5 m, south), two infrared temperature sensors (5 m, south, vertically downward), soil heat flux (-0.06 m), soil temperature profile (0, -0.02, -0.04, -0.1, -0.2, -0.4, -0.8, -1.2, and -1.6 m), soil moisture profile (-0.02, -0.04, -0.1, -0.2, -0.4, -0.8, -1.2, and -1.6 m), and a TCAV averaging soil thermocouple probe (-0.02, -0.04 m). The observations included the following: air temperature and humidity (Ta_5 m; RH_5 m) (℃ and %, respectively), wind speed (Ws_10 m) (m/s), wind direction (WD_10 m) (°), air pressure (press) (hpa), precipitation (rain) (mm), four-component radiation (DR, incoming shortwave radiation; UR, outgoing shortwave radiation; DLR_Cor, incoming longwave radiation; ULR_Cor, outgoing longwave radiation; Rn, net radiation) (W/m2), infrared temperature (IRT_1 and IRT_2) (℃), soil heat flux (Gs_1, Gs_2 and Gs_3) (W/m2), soil temperature (Ts_0 cm, Ts_2 cm, Ts_4 cm, Ts_10 cm, Ts_20 cm, Ts_40 cm, Ts_80 cm, Ts_120 cm, and Ts_160 cm) (℃), soil moisture (Ms_2 cm, Ms_4 cm, Ms_10 cm, Ms_20 cm, Ms_40 cm, Ms_80 cm, Ms_120 cm, and Ms_160 cm) (%, volumetric water content), and average soil temperature (TCAV, ℃). The data processing and quality control steps were as follows: (1) The AWS data were averaged over intervals of 10 min for a total of 144 records per day. The missing data were denoted by -6999. (2) Data in duplicate records were rejected. (3) Unphysical data were rejected. (4) The data marked in red are problematic data. (5) The format of the date and time was unified, and the date and time were collected in the same column, for example, date and time: 2018-6-10 10:30. (6) Finally, the naming convention was AWS+ site no. Moreover, suspicious data were marked in red. For more information, please refer to Guo et al. (2020) (for sites information), Liu et al. (2013) (for data processing) in the Citation section.
LIU Shaomin XU Ziwei
This dataset includes data obtained from the automatic weather station (AWS) at the observation system of Meteorological elements of Huailai station between January 1 and December 31, 2017. The site (115.7880° E, 40.3491° N) was located on a maize surface, which is near Donghuayuan Town of Huailai city in Hebei Province. The elevation is 480 m. The installation heights and orientations of different sensors and measured quantities were as follows: air temperature and humidity profile (5 m, north), wind speed and direction profile (10 m, north), air pressure (in the box), rain gauge (10 m), four-component radiometer (5 m, south), two infrared temperature sensors (5 m, south, vertically downward), soil heat flux (-0.06 m), soil temperature profile (0, -0.02, -0.04, -0.1, -0.2, -0.4, -0.8, -1.2, and -1.6 m), soil moisture profile (-0.02, -0.04, -0.1, -0.2, -0.4, -0.8, -1.2, and -1.6 m), and a TCAV averaging soil thermocouple probe (-0.02, -0.04 m). The observations included the following: air temperature and humidity (Ta_5 m; RH_5 m) (℃ and %, respectively), wind speed (Ws_10 m) (m/s), wind direction (WD_10 m) (°), air pressure (press) (hpa), precipitation (rain) (mm), four-component radiation (DR, incoming shortwave radiation; UR, outgoing shortwave radiation; DLR_Cor, incoming longwave radiation; ULR_Cor, outgoing longwave radiation; Rn, net radiation) (W/m2), infrared temperature (IRT_1 and IRT_2) (℃), soil heat flux (Gs_1, Gs_2 and Gs_3) (W/m2), soil temperature (Ts_0 cm, Ts_2 cm, Ts_4 cm, Ts_10 cm, Ts_20 cm, Ts_40 cm, Ts_80 cm, Ts_120 cm, and Ts_160 cm) (℃), soil moisture (Ms_2 cm, Ms_4 cm, Ms_10 cm, Ms_20 cm, Ms_40 cm, Ms_80 cm, Ms_120 cm, and Ms_160 cm) (%, volumetric water content), and average soil temperature (TCAV, ℃). The data processing and quality control steps were as follows: (1) The AWS data were averaged over intervals of 10 min for a total of 144 records per day. The missing data were denoted by -6999. (2) Data in duplicate records were rejected. (3) Unphysical data were rejected. (4) The data marked in red are problematic data. (5) The format of the date and time was unified, and the date and time were collected in the same column, for example, date and time: 2017-6-10 10:30. (6) Finally, the naming convention was AWS+ site no. Moreover, suspicious data were marked in red. For more information, please refer to Yang et al. (2015) (for sites information), Liu et al. (2013) (for data processing) in the Citation section.
LIU Shaomin XU Ziwei
This dataset contains the flux measurements from the large aperture scintillometer (LAS) at Huailai station. There were two types of LASs: German BLS450 and zzLAS. The observation periods were from January 1 to December 31, 2019. The site ( (north: 115.7825° E, 40.3522° N; south: 115.7880° E, 40.3491° N) was located in the Donghuahuan town of Huailai city, Hebei Province. The elevation is 480 m. The underlying surface between the two towers contains mainly maize. The effective height of the LASs was 14 m; the path length was 1870 m. Data were sampled at 1 min intervals. Raw data acquired at 1 min intervals were processed and quality-controlled. The data were subsequently averaged over 30 min periods. The main quality control steps were as follows. (1) The data were rejected when Cn2 was beyond the saturated criterion. (2) Data were rejected when the demodulation signal was small. (3) Data were rejected within 1 h of precipitation. (4) Data were rejected at night when weak turbulence occurred (u* was less than 0.1 m/s). The sensible heat flux was iteratively calculated by combining with meteorological data and based on Monin-Obukhov similarity theory. There were several instructions for the released data. (1) The data were primarily obtained from BLS450 measurements; missing flux measurements from the BLS450 were filled with measurements from the zzLAS. Missing data were denoted by -6999. (2) The dataset contained the following variables: data/time (yyyy-mm-dd hh:mm:ss), the structural parameter of the air refractive index (Cn2, m-2/3), and the sensible heat flux (H_LAS, W/m^2). (3) In this dataset, the time of 0:30 corresponds to the average data for the period between 0:00 and 0:30; the data were stored in *.xls format. Moreover, suspicious data were marked in red. For more information, please refer to Guo et al. (2020) (for sites information), Liu et al. (2013) (for data processing) in the Citation section.
LIU Shaomin XU Ziwei
This dataset contains the flux measurements from the large aperture scintillometer (LAS) at Huailai station. There were two types of LASs: German BLS450 and zzLAS. The observation periods were from January 1 to December 31, 2018. The site ( (north: 115.7825° E, 40.3522° N; south: 115.7880° E, 40.3491° N) was located in the Donghuahuan town of Huailai city, Hebei Province. The elevation is 480 m. The underlying surface between the two towers contains mainly maize. The effective height of the LASs was 14 m; the path length was 1870 m. Data were sampled at 1 min intervals. Raw data acquired at 1 min intervals were processed and quality-controlled. The data were subsequently averaged over 30 min periods. The main quality control steps were as follows. (1) The data were rejected when Cn2 was beyond the saturated criterion. (2) Data were rejected when the demodulation signal was small. (3) Data were rejected within 1 h of precipitation. (4) Data were rejected at night when weak turbulence occurred (u* was less than 0.1 m/s). The sensible heat flux was iteratively calculated by combining with meteorological data and based on Monin-Obukhov similarity theory. There were several instructions for the released data. (1) The data were primarily obtained from BLS450 measurements; missing flux measurements from the BLS450 were filled with measurements from the zzLAS. Missing data were denoted by -6999. (2) The dataset contained the following variables: data/time (yyyy-mm-dd hh:mm:ss), the structural parameter of the air refractive index (Cn2, m-2/3), and the sensible heat flux (H_LAS, W/m^2). (3) In this dataset, the time of 0:30 corresponds to the average data for the period between 0:00 and 0:30; the data were stored in *.xls format. Moreover, suspicious data were marked in red. For more information, please refer to Guo et al. (2020) (for sites information), Liu et al. (2013) (for data processing) in the Citation section.
LIU Shaomin XU Ziwei
The data set records the surface water quality assessment data set of the Yangtze River mainstream (2008.3-2020.6). The data are collected from Yushu ecological environment bureau. The data set contains 226 files, including: water quality assessment of surface water in June 2010, water quality assessment of surface water in July 2010, water quality assessment of surface water in August 2010, water quality assessment of surface water in August 2011, and water quality assessment of surface water in April 2012. Each data table has seven fields: Field 1: monitoring section Field 2: classification of water environment functional areas Field 3: water quality category Field 4: main pollution indicators Field 5: water quality status Field 6: water quality last month Field 7: water quality in the same period of last year
Department of Ecology and Environment of Qinghai Province
The data set records the water quality evaluation results of the monitoring sections of the Yangtze River, Yellow River and Huangshui (2010-2012). The data is collected from Yushu ecological environment bureau. The data set contains 18 files, which are: water quality assessment of national control section of Yangtze River in April 2010, water quality assessment of national control section of Yangtze River in May 2010, water quality assessment of national control section of Yangtze River in September 2010, water quality assessment of national control section of Yangtze River in October 2010, etc. the data table structure is the same. There are seven fields in each data table Field 1: monitoring section Field 2: classification of water environment functional areas Field 3: water quality category Field 4: main pollution indicators Field 5: water quality status Field 6: water quality last month Field 7: water quality in the same period of last year
Ecological Environment Bureau of Yushu Prefecture