WATER: Dataset of CMA operational meteorological stations observations in the Heihe River Basin

The dataset of CMA operational meteorological stations observations in the Heihe river basin were provided by Gansu Meteorological Administration and Qinghai Meteorological Administration. It included: (1) Diurnal precipitation, sunshine, evaporation, the wind speed, the air temperature and air humidity (2, 8, 14 and 20 o'clock) in Mazongshan, Yumen touwnship, Dingxin, Jinta, Jiuquan, Gaotai, Linze, Sunan, Zhangye, Mingle, Shandan and Yongchang in Gansu province (2) the wind direction and speed, the temperature and the dew-point spread (8 and 20 o'clock; 850, 700, 600, 500, 400, 300, 250, 200, 150, 100 and 50hpa) in Jiuquan, Zhangye and Mingqin in Gansu province and Golmud, Doulan and Xining in Qinghai province (3) the surface temperature, the dew point, the air pressure, the voltage transformation (3 hours and 24 hours), the weather phenomena (the present and the past), variable temperatures, visibility, cloudage, the wind direction and speed, precipitation within six hours and unusual weather in Jiuquan, Sunan, Jinta, Dingxin, Mingle, Zhangye, Gaotai, Shandan, Linze, Yongchang and Mingqin in Gansu province and Tuole, Yeniugao, Qilian, Menyuan, Xining, Gangcha and Huangyuan in Qinhai province.

0 2020-10-12

Terrestrial evapotranspiration dataset across China (1982-2017)

This dataset (version 1.5) is derived from the complementary-relationship method, with inputs of CMFD downward short- and long-wave radiation, air temperature, air pressure, GLASS albedo and broadband longwave emissivity, ERA5-land land surface temperature and humidity, and NCEP diffuse skylight ratio, etc. This dataset covers the period of 1982-2017, and the spatial coverage is Chinese land area. This dataset would be helpful for long-term hydrological cycle and climate change research. Land surface actual evapotranspiration (Ea),unit: mm month-1. The spatial resolution is 0.1-degree; The temporal resolution is monthly; The data type is NetCDF; This evapotranspiration dataset is only for land surface.

0 2020-09-16

NCEP reanalysis datasets (1948-2018)

1) The data set is composed of global atmospheric reanalysis data jointly produced by the National Centers for Environmental Prediction (NCEP) and the National Center for Atmospheric Research (NCAR). These grid data are generated by reanalysing the global meteorological data from 1948 to present by applying observation data, forecasting models and assimilation systems. The data variables include surface, near-surface (.995 sigma layer) and multiple meteorological variables in different barospheres, such as precipitation, temperature, relative humidity, sea level pressure, geopotential height, wind field, heat flux, etc. 2) The coverage time is from 1948 to 2018, and the data from 1948 to 1957 are non-Gaussian grid data. The data cover the whole world. The spatial resolution is a 2.5° latitude by 2.5° longitude grid. The vertical resolution is a 17-layer standard pressure barosphere, with layer boundaries at 1000, 925, 850, 700, 600, 500, 400, 300, 250, 200, 150, 100, 70, 50, 30, 20, and 10 hPa, and 28 sigma levels. Some variables are calculated for 8 layers (omega) or 12 layers (humidity), with temporal resolutions of 6 hours, daily, monthly or a long-term monthly average (from 1981 to 2010). The daily data are obtained by averaging the daily values of 0Z, 6Z, 12Z and 18Z. 3) Missing values are assigned a value of -9.99691e+36f. The data are stored in the .nc format with the file name var.time.stat.nc, and each file includes data on latitude, longitude, time, and atmospheric variables. For detailed data specifications, please visit http://www.esrl.noaa.gov/pad/data.

0 2020-09-14

Aerosol optical property dataset of the Tibetan Plateau by ground-based observation (2009-2016)

The measurement data of the sun spectrophotometer can be directly used to perform inversion on the optical thickness of the non-water vapor channel, Rayleigh scattering, aerosol optical thickness, and moisture content of the atmospheric air column (using the measurement data at 936 nm of the water vapor channel). The aerosol optical property data set of the Tibetan Plateau by ground-based observations was obtained by adopting the Cimel 318 sun photometer, and both the Mt. Qomolangma and Namco stations were involved. The temporal coverage of the data is from 2009 to 2016, and the temporal resolution is one day. The sun photometer has eight observation channels from visible light to near infrared. The center wavelengths are 340, 380, 440, 500, 670, 870, 940 and 1120 nm. The field angle of the instrument is 1.2°, and the sun tracking accuracy is 0.1°. According to the direct solar radiation, the aerosol optical thickness of 6 bands can be obtained, and the estimated accuracy is 0.01 to 0.02. Finally, the AERONET unified inversion algorithm was used to obtain aerosol optical thickness, Angstrom index, particle size spectrum, single scattering albedo, phase function, birefringence index, asymmetry factor, etc.

0 2020-08-17

Daily rainfall data 1990-2004 of the Heihe River Basin

Data source: China l Meteorological Administration Network; Data Content: Daily Rainfall Data Series of Heihe River Basin from 1990 to 2004; Evaporation Data of Heihe River Basin from 2000 to 2012. Data Spatial Range: Rainfall Data (Yingluoxia, Shandan, Gaoya, Pingchuan, Ganzhou Pingshan Lake, Zhengyixia Gorge, Liyuan River); Evaporation Data (Zhangye, Gaotai, Dingxin, Jiuquan, Jinta, Shandan, Ejina, Hequ)

0 2020-07-28

Qilian Mountains integrated observatory network: cold and arid research network of Lanzhou university (eddy covariance system of Guazhou station, 2018)

This dataset contains the flux measurements from the Guazhou station eddy covariance system (EC) in the middle reaches of the Heihe integrated observatory network from September 24 to December 31 in 2018. The site (95.673E, 41.405N) was located in a desert in Liuyuan Guazhou, which is near Jiuquan city in Gansu Province. The elevation is 2016 m. The EC was installed at a height of 4.0 m, and the sampling rate was 10 Hz. The sonic anemometer faced north, and the separation distance between the sonic anemometer and the CO2/H2O gas analyzer (CSAT3&Li7500A) was 0.17 m. The raw data acquired at 10 Hz were processed using the Eddypro post-processing software, including the spike detection, lag correction of H2O/CO2 relative to the vertical wind component, sonic virtual temperature correction, coordinate rotation (2-D rotation), corrections for density fluctuation (Webb-Pearman-Leuning correction), and frequency response correction. The EC data were subsequently averaged over 30 min periods. The observation data quality was divided into three classes according to the quality assessment method of stationarity (Δst) and the integral turbulent characteristics test (ITC): class 1-3 (high quality), class 4-6 (good), class 7-8 (poor, better than gap filling data), class9 (rejected). In addition to the above processing steps, the half-hourly flux data were screened in a four-step procedure: (1) data from periods of sensor malfunction were rejected; (2) data collected before or after 1 h of precipitation were rejected; (3) incomplete 30 min data were rejected when the missing data constituted more than 3% of the 30 min raw record; and (4) data were rejected at night when the friction velocity (u*) was less than 0.1 m/s. There were 48 records per day, and the missing data were replaced with -6999. Suspicious data were marked in red. The released data contained the following variables: data/time, wind direction (Wdir, °), wind speed (Wnd, m/s), the standard deviation of the lateral wind (Std_Uy, m/s), virtual temperature (Tv, ℃), H2O mass density (H2O, g/m3), CO2 mass density (CO2, mg/m3), friction velocity (ustar, m/s), stability (z/L), sensible heat flux (Hs, W/m2), latent heat flux (LE, W/m2), carbon dioxide flux (Fc, mg/ (m2s)), quality assessment of the sensible heat flux (QA_Hs), quality assessment of the latent heat flux (QA_LE), and quality assessment of the carbon flux (QA_Fc). In this dataset, the time of 0:30 corresponds to the average data for the period between 0:00 and 0:30; the data were stored in *.xls format. Detailed information can be found in the suggested references. For more information, please refer to Liu et al. (2011) for data processing) in the Citation section.

0 2020-07-25

Regular meteorological element datasets for 22 observing sites in Sri Lanka (2008-2018)

This data set includes the daily values of temperature, pressure, relative humidity, wind speed, wind direction, precipitation, radiation, and water vapor pressure observed from 22 international exchange stations in Sri Lanka from January 1, 2008 to October 1, 2018. The data was downloaded from the NCDC of NOAA. The data set processing method is that the original data is quality-controlled to form a continuous time series. It satisfies the accuracy of the original meteorological observation data of the National Weather Service and the World Meteorological Organization (WMO), and eliminates the systematic error caused by the failure of the tracking data and the sensor. The meteorological site information contained in this dataset is as follows: LATITUDE LONGITUDE ELEVATION  COUNTRY  STATION NAME +09.800  +080.067   +0015.0   SRI LANKA  KANKASANTURAI +09.650  +080.017   +0003.0   SRI LANKA  JAFFNA +09.267  +080.817   +0002.0   SRI LANKA  MULLAITTIVU +08.983  +079.917   +0003.0   SRI LANKA  MANNAR +08.750  +080.500   +0098.0   SRI LANKA  VAVUNIYA +08.539  +081.182   +0001.8   SRI LANKA  CHINA BAY +08.301  +080.428   +0098.8   SRI LANKA  ANURADHAPURA +08.117  +080.467   +0117.0   SRI LANKA  MAHA ILLUPPALLAMA +08.033  +079.833   +0002.0   SRI LANKA  PUTTALAM +07.706  +081.679   +0006.1   SRI LANKA  BATTICALOA +07.467  +080.367   +0116.0   SRI LANKA  KURUNEGALA +07.333  +080.633   +0477.0   SRI LANKA  KANDY +07.181  +079.866   +0008.8   SRI LANKA  BANDARANAIKE INTL COLOMBO +06.900  +079.867   +0007.0   SRI LANKA  COLOMBO +06.822  +079.886   +0006.7   SRI LANKA  COLOMBO RATMALANA +06.967  +080.767   +1880.0   SRI LANKA  NUWARA ELIYA +06.883  +081.833   +0008.0   SRI LANKA  POTTUVIL +06.817  +080.967   +1250.0   SRI LANKA  DIYATALAWA +06.983  +081.050   +0667.0   SRI LANKA  BADULLA +06.683  +080.400   +0088.0   SRI LANKA  RATNAPURA +06.033  +080.217   +0013.0   SRI LANKA  GALLE +06.117  +081.133   +0020.0   SRI LANKA  HAMBANTOTA

0 2020-05-14

Hydrogen and oxygen isotopes and hydrological information data set of lake water in the source area of the Yellow River (2014-2016)

In April 2014 and may 2016, 21 Lakes (7 non thermal lakes and 14 thermal lakes) were collected in the source area of the Yellow River (along the Yellow River) respectively. The abundance of hydrogen and oxygen allogens was measured by Delta V advantage dual inlet / hdevice system in inno tech Alberta laboratory in Victoria, Canada. The isotope abundance was expressed in the form of δ (‰) (relative to the average seawater abundance in Vienna) )Test error: δ 18O: 0.1 ‰, δ D: 1 ‰. The data also includes Lake area and lake basin area extracted from Landsat 2017 image data in Google Earth engine.

0 2020-04-23

Dataset of ground truth of land surface evapotranspiration at regional scale in the Heihe River Basin (2012-2016) ETMap Version 1.0

Surface evapotranspiration (ET) is an important variable that connects the land energy balance, water cycle and carbon cycle. The accurate acquisition of ET is helpful to the research of global climate change, crop yield estimation, drought monitoring, and it is of great significance to regional and global water resource planning and management. The methods of obtaining evapotranspiration mainly include ground observation, remote sensing estimation, model simulation and assimilation. The high-precision surface evapotranspiration data can be obtained by ground observation, but the spatial representation of observation stations is very limited; remote sensing estimation, model simulation and assimilation methods can obtain the spatial continuous surface evapotranspiration, but there are problems in the verification of accuracy and the rationality of spatial-temporal distribution pattern. Therefore, this study makes full use of a large number of high-precision station observation data, combined with multi-source remote sensing information, to expand the observation scale of ground stations to the region, to obtain high-precision, spatiotemporal distribution of continuous surface evapotranspiration. Based on the "Heihe River Integrated Remote Sensing joint experiment" (water), "Heihe River Basin Ecological hydrological process integrated remote sensing observation joint experiment" (hiwater), the accumulated station observation data (automatic meteorological station, eddy correlator, large aperture scintillation instrument, etc.), 36 stations (65 station years, distribution map is shown in Figure 1) are selected in combination with multi-source remote sensing data (land cover) Five machine learning methods (regression tree, random forest, artificial neural network, support vector machine, depth belief network) were used to construct different scale expansion models of surface evapotranspiration, and the results showed that: compared with The other four methods, random forest method, are more suitable for the study of the scale expansion of surface evapotranspiration from station to region in Heihe River Basin. Based on the selected random forest scale expansion model, taking remote sensing and air driven data as input, the surface evapotranspiration time-space distribution map (etmap) of Heihe River Basin during the growth season (May to September) from 2012 to 2016 was produced. The results show that the overall accuracy of etmap is good. The RMSE (MAPE) of upstream (las1), midstream (las2-las5) and downstream (las6-las8) are 0.65 mm / day (18.86%), 0.99 mm / day (19.13%) and 0.91 mm / day (22.82%), respectively. In a word, etmap is a high-precision evapotranspiration product in Heihe River Basin, which is based on the observation data of stations and the scale expansion of random forest algorithm. Please refer to Xu et al. (2018) for all station information and scale expansion methods, and Liu et al. (2018) for observation data processing.

0 2020-04-07

Monthly mean evaporate of the Heihe River Basin (2000-2009)

The routine meteorological observation data set of four times a day provided by the data management center of Heihe plan is adopted, including 13 stations. The daily evaporation was statistically sorted out, and the monthly evaporation data of 2000-2009 years was calculated. The spatial stability analysis is carried out to calculate the coefficient of variation. If the coefficient of variation is greater than 100%, the geographical weighted regression is used to calculate the relationship between the station and the geographical terrain factors, and the monthly evaporation distribution trend is obtained; if the coefficient of variation is less than or equal to 100%, the common least square regression is used to calculate the relationship between the station evaporation value and the geographical terrain factors (latitude, longitude, elevation, slope, aspect, etc.) After the trend is removed, the residuals are fitted and corrected by HASM (high accuracy surface modeling method). Finally, the monthly average evaporation distribution of the Heihe River Basin in 1961-2010 is obtained by adding the trend surface results and the residual correction results. Time resolution: monthly average evaporation in 2000-2009. Spatial resolution: 500M.

0 2020-03-28