In-situ water quality parameters of the lakes on the Tibetan Plateau (2009-2020)

This dataset provides the in-situ lake water parameters of 124 closed lakes with a total lake area of 24,570 km2, occupying 53% of the total lake area of the TP.These in-situ water quality parameters include water temperature, salinity, pH,chlorophyll-a concentration, blue-green algae (BGA) concentration, turbidity, dissolved oxygen (DO), fluorescent dissolved organic matter (fDOM), and water clarity of Secchi Depth (SD).

0 2021-07-29

Antarctica Ice Sheet Mass Changes from Satellite Gravimetry (2002-2019)

This dataset includes the Antarctica ice sheet mass balance estimated from satellite gravimetry data, April 2002 to December 2019. The satellite measured gravity data mainly come from the joint NASA/DLR mission, Gravity Recovery And Climate Exepriment (GRACE, April 2002 to June 2017), and its successor, GRACE-FO (June 2018 till present). Considering the ~1-year data gap between GRACE and GRACE-FO, we extra include gravity data estimated from GPS tracking data of ESA's Swarm 3-satellite constellation. The GRACE data used in this study are weighted mean of CSR, GFZ, JPL and OSU produced solutions. The post-processing includes: replacing GRACE degree-1, C20 and C30 spherical harmonic coefficients with SLR estimates, destriping filtering, 300-km Gaussian smoothing, GIA correction using ICE6-G_D (VM5a) model, leakage reduction using forward modeling method and ellipsoidal correction.

0 2021-07-01

Dataset of alpine wetland water body physical and chemical properties background survey (2019-2020)

This dataset contains the physicochemical properties and water environment indicators of typical alpine wetlands in the Selincuo and Lhasa River basins of the Tibetan Plateau. Wetland water samples were obtained through field sampling, and data on the physicochemical indicators of the water bodies were obtained through chemical analysis in the laboratory. Some indicators were measured in the field using instruments. The data analysis method meets the requirements of relevant national standards and the results are reliable. The data can be used as background data for the water environment of wetlands on the Tibetan Plateau, to assess the ecological and environmental quality of wetlands, and to study the impact of climate change on alpine wetlands.

0 2021-06-16

Glacier boundary in Qilian Mountains (V2.0, 2019)

This dataset contains the glacier outlines in Qilian Mountain Area in 2019. The dataset was produced based on classical band ratio criterion and manual editing. Chinese GF series images collected in 2019 were used as basic data for glacier extraction. Google images and Map World images were employed as reference data for manual adjusting. The dataset was stored in SHP format and attached with the attributions of coordinates, glacier ID and glacier area. Consisting of 1 season, the dataset has a spatial resolution of 2 meters. The accuracy is about 1 pixel (±2 meter). The dataset directly reflects the glacier distribution within the Qilian Mountain in 2019, and can be used for quantitative estimation of glacier mass balance and the quantitative assessment of glacier change’s impact on basin runoff.

0 2021-06-15

Glacier inventory of Qilian Mountain Area (2020)

This dataset contains the glacier outlines in Qilian Mountain Area in 2020. The dataset was produced based on classical band ratio criterion and manual editing. Chinese GF series images collected in 2020 were used as basic data for glacier extraction. Google images and Map World images were employed as reference data for manual adjusting. The dataset was stored in SHP format and attached with the attributions of coordinates, glacier ID and glacier area. Consisting of 1 season, the dataset has a spatial resolution of 2 meters. The accuracy is about 1 pixel (±2 meter). The dataset directly reflects the glacier distribution within the Qilian Mountain in 2020, and can be used for quantitative estimation of glacier mass balance and the quantitative assessment of glacier change’s impact on basin runoff.

0 2021-06-15

Annual glacier mass balance data on Tibetan Plateau (2019-2020)

Glacial mass balance is one of the most important glaciological parameters to characterize the accumulation and ablation of glaciers. Glacier mass balance is the link between climate and glacier change, and it is the direct reflection of glacier to the regional climate. Climate change leads to the corresponding changes in the material budget of glaciers, which in turn can lead to changes in the movement characteristics and thermal conditions of glaciers, and then lead to changes in the location, area and ice storage of glaciers. The monitoring method is to set a fixed mark flower pole on the glacier surface and regularly monitor the distance between the glacier surface and the top of the flower pole to calculate the amount of ice and snow melting; In the accumulation area, the snow pits or boreholes are excavated regularly to measure the snow density, analyze the characteristics of snow granular snow additional ice layer, and calculate the snow accumulation; Then, the single point monitoring results are drawn on the large-scale glacier topographic map, and the instantaneous, seasonal (such as winter and summer) and annual mass balance components of the whole glacier are calculated according to the net equilibrium contour method or contour zoning method. The data set is the annual mass balance data of different representative glaciers in the Qinghai Tibet Plateau and Tianshan Mountains, in millimeter water equivalent.

0 2021-06-15

Data from automatic weather station at the end of glacier in Qinghai-Tibet Plateau (2019-2020)

Glacier surface micrometeorology is to observe the wind direction, wind speed, temperature, humidity, air pressure, four component radiation, ice temperature and precipitation at a certain height of the glacier surface. Glacier surface micrometeorology monitoring is one of the important contents of glacier monitoring. It is an important basic data for the study of energy mass balance, glacier movement, glacier melt runoff, ice core and other related model simulation, which lays a foundation for exploring the relationship between climate change and glacier change. Automatic monitoring is mainly carried out by setting up Alpine weather stations on the glacier surface, and portable weather stations can also be used for short-term flow monitoring. In recent years, more than 20 glacier surfaces in Tianshan, West Kunlun, Qilian, Qiangtang inland, Tanggula, Nianqing Tanggula, southeastern Tibet, Hengduan and Himalayas have been monitored. The data set is monthly meteorological data of glacier area and glacier end.

0 2021-06-10

Glacier thickness data in the third polar region (2018-2021)

Glacier thickness is the vertical distance between the glacier surface and the glacier bottom. The distribution of glacier thickness is not only controlled by glacier scale and subglacial topography, but also varies with different stages of glacier response to climate. The data include longitude and latitude, elevation, single point thickness, total ice reserves and instrument type of glacier survey line. The glacier thickness mainly comes from drilling and ground penetrating radar (GPR). The drilling method is to drill holes on the ice surface to the bedrock under the ice, so as to obtain the thickness of the glacier at a single point; Glacier radar thickness measurement technology can accurately measure the continuous distribution of glacier thickness on the survey line, and obtain the topographic characteristics of subglacial bedrock, so as to provide necessary parameters for the estimation of glacier reserves and the study of glacier dynamics The accuracy of glacier drilling data reaches decimeter level. The accuracy of thickness measurement by GPR radar is between 5% and 15% in theory due to the difference of glacier properties and radar signal strength of bottom interface. Glacier thickness is a prerequisite for obtaining information of subglacial topography and glacier reserves. In the numerical simulation and model study of glacier dynamics, glacier thickness is an important basic input parameter. At the same time, glacier reserve is the most direct parameter to characterize glacier scale and glacier water resources. It is not only very important for accurate assessment, reasonable planning and effective utilization of glacier water resources, but also has important and far-reaching significance for regional socio-economic development and ecological security.

0 2021-05-27

Palynological data set of Typical Glaciers in Qinghai Tibet Plateau

High resolution pollen records from ice cores can indicate the relationship between seasonal vegetation changes and climate indicators. High resolution sporopollen analysis was carried out on the 32 m ice core sediments of Zuopu ice core in Qinghai Tibet Plateau. 117 SPOROPOLLEN ASSEMBLAGES were obtained. All the data are sporopollen percentage data, which are arranged in order of depth.

0 2021-05-27

High resolution (5m) dataset of glacier elevation changes in Nyainqentanglha mountains on the Tibetan Plateau (2000‒2013, 2000‒2017)

This dataset includes data of glacier elevation changes in 2000‒2013 and 2000‒2017 at high spatial resolution (5 m). The specific areas are Namco area in the west section of Nyainqentangula Mountains (WNM) and Kangri Karpo area in the east section of Nyainqentangula Mountains (ENM). Glacier boundary refers to Randolph Glacier Inventory Version 4.0 (RGI 4.0). The glacier elevation changes were calculated from the DEM data generated by ZiYuan-3 Three-Line-Array (ZY-3 TLA) stereo images in 2013 and 2017 and SRTM DEM data in 2000, respectively. The data in the WNM include three periods, i.e., 2000‒2013, 2013‒2017 and 2000‒2017. The data in the ENM include one period, i.e., 2000‒2017. The spatial resolution of the dataset is 5 meters, the unit is m a^−1, the data format is GeoTIFF, the data type is floating-point, and the projection mode is UTM 46N for the west segment and UTM 47N for the east segment. The glacier elevation change can be transformed into the glacier mass balance (unit: w.e. a^−1) of corresponding temporal intervals by multiplying the average density of the glacier. This dataset can provide the details of the spatial patterns of glacier elevation changes to support modeling studies of glacier mass balance in this region.

0 2021-04-23