Qilian Mountains integrated observatory network: Dataset of Qinghai Lake integrated observatory network (an observation system of Meteorological elements gradient of Alpine meadow and grassland ecosystem Superstation, 2020)

This dataset includes data recorded by the Qinghai Lake integrated observatory network obtained from an observation system of Meteorological elements gradient of the Alpine meadow and grassland ecosystem Superstation from Janurary 1 to December 31 in 2020. The site (98°35′41.62″E, 37°42′11.47″N) was located in the alpine meadow and alpine grassland ecosystem, near the SuGe Road in Tianjun County, Qinghai Province. The elevation is 3718m. The installation heights and orientations of different sensors and measured quantities were as follows: air temperature and humidity profile (HMP155; 3, 5, 10, 15, 20, 30, and 40 m, towards north), wind speed and direction profile (windsonic; 3, 5, 10, 15, 20, 30, and 40 m, towards north), air pressure (PTB110; 3 m), rain gauge (TE525M; 10m of the platform in west by north of tower), four-component radiometer (CNR4; 6m, towards south), two infrared temperature sensors (SI-111; 6 m, towards south, vertically downward), photosynthetically active radiation (PQS1; 6 m, towards south, each with one vertically downward and one vertically upward, soil heat flux (HFP01; 3 duplicates below the vegetation; -0.06 m), soil temperature profile (109; -0.05、-0.10、-0.20、-0.40、-0.80、-1.20、-2.00、-3.00 and -4.00m), soil moisture profile (CS616; -0.05、-0.10、-0.20、-0.40、-0.80、-1.20、-2.00、-3.00 and -4.00m). The observations included the following: air temperature and humidity (Ta_3 m, Ta_5 m, Ta_10 m, Ta_15 m, Ta_20 m, Ta_30 m, and Ta_40 m; RH_3 m, RH_5 m, RH_10 m, RH_15 m, RH_20 m, RH_30 m, and RH_40 m) (℃ and %, respectively), wind speed (Ws_3 m, Ws_5 m, Ws_10 m, Ws_15 m, Ws_20 m, Ws_30 m, and Ws_40 m) (m/s), wind direction (WD_3 m, WD_5 m, WD_10 m, WD_15 m, WD_20 m, WD_30m, and WD_40 m) (°), precipitation (rain) (mm), air pressure (press) (hpa), infrared temperature (IRT_1 and IRT_2) (℃), photosynthetically active radiation of upward and downward (PAR_D_up and PAR_D_down) (μmol/ (s m-2)), four-component radiation (DR, incoming shortwave radiation; UR, outgoing shortwave radiation; DLR_Cor, incoming longwave radiation; ULR_Cor, outgoing longwave radiation; Rn, net radiation) (W/m^2), soil heat flux (Gs_1, Gs_2, and Gs_3) (W/m^2), soil temperature (Ts_5cm、Ts_10cm、Ts_20cm、Ts_40cm、Ts_80cm、Ts_120cm、Ts_200cm、Ts_300cm、Ts_400cm) (℃), soil moisture (Ms_5cm、Ms_10cm、Ms_20cm、Ms_40cm、Ms_80cm、Ms_120cm、Ms_200cm、Ms_300cm、Ms_400cm) (%, volumetric water content). The data processing and quality control steps were as follows: (1) The AWS data were averaged over intervals of 10 min for a total of 144 records per day. The missing data were denoted by -6999. (2) Data in duplicate records were rejected. (3) Unphysical data were rejected. (4) The data marked in red are problematic data. (5) The format of the date and time was unified, and the date and time were collected in the same column, for example, date and time: 2018/8/31 10:30. Moreover, suspicious data were marked in red.

0 2021-06-08

Qilian Mountains integrated observatory network: Dataset of Qinghai Lake integrated observatory network (an observation system of Meteorological elements gradient of Yulei station on Qinghai lake, 2020)

This dataset includes data recorded by the Qinghai Lake integrated observatory network obtained from an observation system of Meteorological elements gradient of Yulei station on Qinghai lake from Janurary 1 to December 31, 2020. The site (100° 29' 59.726'' E, 36° 35' 27.337'' N) was located on the Yulei Platform in Erlangjian scenic area, Qinghai Province. The elevation is 3209m. The installation heights and orientations of different sensors and measured quantities were as follows: air temperature and humidity profile (HMP155; 12 and 12.5 m above the water surface, towards north), wind speed and direction profile (windsonic; 14 m above the water surface, towards north) , rain gauge (TE525M; 10m above the water surface in the eastern part of the Yulei platform ), four-component radiometer (NR01; 10 m above the water surface, towards south), one infrared temperature sensors (SI-111; 10 m above the water surface, towards south, vertically downward), photosynthetically active radiation (LI190SB; 10 m above the water surface, towards south), water temperature profile (109, -0.2, -0.5, -1.0, -2.0, and -3.0 m). The observations included the following: air temperature and humidity (Ta_12 m, Ta_12.5 m; RH_12 m, RH_12.5 m) (℃ and %, respectively), wind speed (Ws_14 m) (m/s), wind direction (WD_14 m) (°) , precipitation (rain) (mm), four-component radiation (DR, incoming shortwave radiation; UR, outgoing shortwave radiation; DLR_Cor, incoming longwave radiation; ULR_Cor, outgoing longwave radiation; Rn, net radiation) (W/m^2), infrared temperature (IRT_1) (℃), photosynthetically active radiation (PAR) (μmol/ (s m-2)), water temperature (Tw_20cm、Tw_50cm、Tw_100cm、Tw_200cm、Tw_300cm) (℃). The data processing and quality control steps were as follows: (1) The AWS data were averaged over intervals of 10 min for a total of 144 records per day. As the lake water freezes in winter, the water temperature probe is withdrawn, so there is no water temperature data record during October 19, 2020 to December 31, 2020. The missing data were denoted by -6999. (2) Data in duplicate records were rejected. (3) Unphysical data were rejected. (4) The data marked in red are problematic data. (5) The format of the date and time was unified, and the date and time were collected in the same column, for example, date and time: 2018-1-1 10:30. Moreover, suspicious data were marked in red.

0 2021-06-08

Qilian Mountains integrated observatory network: Dataset of Qinghai Lake integrated observatory network (an observation system of Meteorological elements gradient of the temperate steppe, 2020

This dataset includes data recorded by the Qinghai Lake integrated observatory network obtained from an observation system of Meteorological elements gradient from Janurary 1 to December 31 in 2020. The site (100°14'8.99"E, 37°14'49.00"N) was located in Sanjiaocheng sheep breeding farm, Gangcha County, Qinghai Province. The elevation is 3210m.The installation heights and orientations of different sensors and measured quantities were as follows: air temperature and humidity profile (HMP155; 3, 5, 10 m, towards north), wind speed and direction profile (windsonic; 3, 5, 10m, towards north), air pressure (PTB110; 3 m), rain gauge (TE525M; towards north), four-component radiometer (CNR4; 6m, towards south), two infrared temperature sensors (SI-111; 6 m, towards south, vertically downward), photosynthetically active radiation (PQS1; 6 m, towards south, each with one vertically downward and one vertically upward, soil heat flux (HFP01; 3 duplicates below the vegetation; -0.06 m), soil temperature profile (109; -0.05、-0.10、-0.20、-0.40、-0.80、-1.20、-2.00、-3.00 and -5.00m), soil moisture profile (CS616; -0.05、-0.10、-0.20、-0.40、-0.80、-1.20、-2.00、-3.00 and -5.00m). The observations included the following: air temperature and humidity (Ta_3 m, Ta_5 m, Ta_10 m; RH_3 m, RH_5 m, RH_10 m) (℃ and %, respectively), wind speed (Ws_3 m, Ws_5 m, Ws_10 m) (m/s), wind direction (WD_3 m, WD_5 m, WD_10 m) (°), precipitation (rain) (mm), air pressure (press) (hpa), infrared temperature (IRT_1 and IRT_2) (℃), photosynthetically active radiation of upward and downward (PAR_D_up and PAR_D_down) (μmol/ (s m-2)), four-component radiation (DR, incoming shortwave radiation; UR, outgoing shortwave radiation; DLR_Cor, incoming longwave radiation; ULR_Cor, outgoing longwave radiation; Rn, net radiation) (W/m^2), soil heat flux (Gs_1, Gs_2, and Gs_3) (W/m^2), soil temperature (Ts_5cm、Ts_10cm、Ts_20cm、Ts_40cm、Ts_80cm、Ts_120cm、Ts_200cm、Ts_300cm、Ts_400cm) (℃), soil moisture (Ms_5cm、Ms_10cm、Ms_20cm、Ms_40cm、Ms_80cm、Ms_120cm、Ms_200cm、Ms_300cm、Ms_400cm) (%, volumetric water content). The data processing and quality control steps were as follows: (1) The AWS data were averaged over intervals of 10 min for a total of 144 records per day. The missing data were denoted by -6999. (2) Data in duplicate records were rejected. (3) Unphysical data were rejected. (4) The data marked in red are problematic data. (5) The format of the date and time was unified, and the date and time were collected in the same column, for example, date and time: 2018/8/31 10:30.

0 2021-06-08

Qilian Mountains integrated observatory network: Dataset of Qinghai Lake integrated observatory network (an observation system of Meteorological elements gradient of Subalpine shrub, 2020

This dataset includes data recorded by the Qinghai Lake integrated observatory network obtained from an observation system of Meteorological elements gradient of the Subalpine shrub from Janurary 1to December 31, 2020. The site (100°6'3.62"E, 37°31'15.67") was located in the subalpine shrub ecosystem, near the Gangcha County, Qinghai Province. The elevation is 3495m. The installation heights and orientations of different sensors and measured quantities were as follows: air temperature and humidity profile (HMP155; 3, 5 and 10 m, towards north), wind speed and direction profile (windsonic; 3, 5 and 10 m, towards north), air pressure (PTB110; 3 m), rain gauge (TE525M; 2 m of the platform in west by north of tower), four-component radiometer (CNR4; 6m, towards south), two infrared temperature sensors (SI-111; 6 m, towards south, vertically downward), photosynthetically active radiation (PQS1; 6 m, towards south, each with one vertically downward and one vertically upward, soil heat flux (HFP01; 3 duplicates below the vegetation; -0.06 m), soil temperature profile (109; -0.05、-0.10、-0.20、-0.40、-0.80、-1.20、-2.00、-3.00 and -4.00m), soil moisture profile (CS616; -0.05、-0.10、-0.20、-0.40、-0.80、-1.20、-2.00、-3.00 and -4.00m). The observations included the following: air temperature and humidity (Ta_3 m, Ta_5 m, and Ta_10 m; RH_3 m, RH_5 m, and RH_10 m) (℃ and %, respectively), wind speed (Ws_3 m, Ws_5 m, and Ws_10 m) (m/s), wind direction (WD_3 m, WD_5 m and WD_10 m) (°), precipitation (rain) (mm), air pressure (press) (hpa), infrared temperature (IRT_1 and IRT_2) (℃), photosynthetically active radiation of upward and downward (PAR_D_up and PAR_D_down) (μmol/ (s m-2)), four-component radiation (DR, incoming shortwave radiation; UR, outgoing shortwave radiation; DLR_Cor, incoming longwave radiation; ULR_Cor, outgoing longwave radiation; Rn, net radiation) (W/m^2), soil heat flux (Gs_1, Gs_2, and Gs_3) (W/m^2), soil temperature (Ts_5cm、Ts_10cm、Ts_20cm、Ts_40cm、Ts_80cm、Ts_120cm、Ts_200cm、Ts_300cm、Ts_500cm) (℃), soil moisture (Ms_5cm、Ms_10cm、Ms_20cm、Ms_40cm、Ms_80cm、Ms_120cm、Ms_200cm、Ms_300cm、Ms_500cm) (%, volumetric water content). The data processing and quality control steps were as follows: (1) The AWS data were averaged over intervals of 10 min for a total of 144 records per day. The missing data were denoted by -6999. (2) Data in duplicate records were rejected. (3) Unphysical data were rejected. (4) The data marked in red are problematic data. (5) The format of the date and time was unified, and the date and time were collected in the same column, for example, date and time: 2018/8/31 10:30. Moreover, suspicious data were marked in red.

0 2021-06-08

The climate datasets of the urbanized area on Tibetan plateau (2019)

The dataset contains observed climate data (1/1/2019-12/31/2019) from two automatic meteorological station located in the Qinghai Lake Basin. The niaodao station (36°58′N,99°52′E) is located in Gonghe County, Hainan Prefecture, Qinghai Province, and the wayanshan station (37°44′ N,100°05′ E) is located in Gangcha County, Haibei Prefecture, Qinghai Province. The observed elements include air temperature (℃) and relative humidity (%) at three layers (1m, 5m, and 10m), atmospheric pressure (hPa), and photosynthetically active radiation (W/m2). Both stations use CR1000 to collect climate data and record it every half an hour, the air temperature and humidity were measured by hmp155a, the atmospheric pressure was measured by CS106 and the photosynthetically active radiation was measured by LI200R. Our dataset will support the study of optimizing the ecological security barrier system in the key urbanized areas of the Tibetan Plateau.

0 2021-05-25

AWS data from typical glacier (2019-2020)

Qiangyong glacier: 90.23 °E, 28.88° N, 4898 m asl. The surface is bedrock. The record contains data of 1.5 m temperature, 1.5 m humidity, 2 m wind speed, 2 m wind orientation, surface temperature, etc. Data from the automated weather station was collected using USB equipment at 19:10 on August 6, 2019, with a recording interval of 10 minutes, and data was downloaded on December 20, 2020. There is no missing data but a problem with the wind speed data after 9:30 on July 14, 2020 (most likely due to damage to the wind vane). Jiagang glacier: 88.69°E, 30.82°N, 5362 m asl. The surface is rubble and weeds. The records include 1.5 meters of temperature, 1.5 meters of humidity, 2 meters of wind speed, 2 meters of wind direction, surface temperature, etc. The initial recording time is 15:00 on August 9, 2019, and the recording interval is 1 minute. The power supply is mainly maintained by batteries and solar panels. The automatic weather station has no internal storage. The data is uploaded to the Hobo website via GPRS every hour and downloaded regularly. At 23:34 on January 5, 2020, the 1.5 meter temperature and humidity sensor was abnormal, and the temperature and humidity data were lost. The data acquisition instrument will be retrieved on December 19, 2020 and downloaded to 19:43 on June 23, 2020 and 3:36 on September 25, 2020. Then the temperature and humidity sensors were replaced, and the observations resumed at 12:27 on December 21. The current data consists of three segments (2019.8.9-2020.6.30; 2020.6.23-2020.9.25; 2020.12.19-2020.12.29), Some data are missing after inspection. Some data are duplicated in time due to recording battery voltage, which needs to be checked. The meteorological observation data at the front end of Jiagang mountain glacier are collected by the automatic weather station Hobo rx3004-00-01 of onset company. The model of temperature and humidity probe is s-thb-m002, the model of wind speed and direction sensor is s-wset-b, and the model of ground temperature sensor is s-tmb-m006. The meteorological observation data at the front end of Jianyong glacier are collected by the US onset Hobo u21-usb automatic weather station. The temperature and humidity probe model is s-thb-m002, the wind speed and direction sensor model is s-wset-b, and the ground temperature sensor model is s-tmb-m006.

0 2021-04-07

Meteorological data of 3650m at mustag station (2019)

(1) This data is the meteorological data of mustag station in 2019. The observation point is located at 75 ° 03.35'e and 38 ° 24.77'n, with an altitude of 3650m. The parameters include temperature, relative humidity, air pressure, precipitation, radiation and wind speed. (2) Data source and processing method: the data comes from the half-hour data of the automatic weather station of the station. Firstly, the abnormal data in the original records are removed, and then the daily values of these parameters are calculated. (3) The meteorological data can be used in the research of atmospheric science, climatology, physical geography and ecology.

0 2021-01-29

Multi-scale surface flux and meteorological elements observation dataset in the Hai River Basin (Huailai station-automatic weather station-10m tower, 2015)

The data set contains the observation data of the 10m tower automatic meteorological station on December 31, 2015 on January 1, 2015 at solstice.The station is located in east garden town, huailai county, hebei province.The latitude and longitude of the observation point is 115.7880E, 40.3491N, and the altitude is 480m. The automatic weather station is installed on a 10m tower, the acquisition frequency is 30s, and the output time is 10min.The observation factors include air temperature and relative humidity (5m), and the direction is due north.The wind speed (10m), the wind direction (10m), the direction is due to the north;Air pressure (installed in waterproof box);Rainfall (10m);The four-component radiation (5m), the direction is due to the south;The infrared surface temperature (5m), the arm is facing south, and the probe is facing vertically downward.The soil temperature and humidity probe was buried at 1.5m to the south of the meteorological tower. The buried depth of the soil temperature probe was 0cm, 2cm, 4cm, 10cm, 20cm, 40cm, 80cm, 120cm and 160cm. The buried depth of the soil moisture sensor was 2cm, 4cm, 10cm, 10cm, 10cm, 10cm, 20cm, 80cm, 120cm and 160cm.The average soil temperature was buried 2,4 cm underground.Soil hot flow plates (3) are buried in the ground 6cm. Processing and quality control of observation data :(1) ensure 144 data per day (every 10min). If data is missing, it will be marked by -6999;(2) eliminate the moments with duplicate records;(3) data that is obviously beyond the physical meaning or the range of the instrument is deleted;(4) the format of date and time is unified, and the date and time are in the same column.For example, the time is: 10:30 on June 10, 2015.Data missing due to damage of charging controller from May 30 to June 5 and October 1 to October 9.Soil heat flux G1 due to the heat flux plate problem, the data of April 19 solstice on May 20 was missing. Data released by the automatic weather station include:Date/Time, air temperature and humidity observation (Ta_5m, RH_5m) (℃, %), wind speed (Ws_10m) (m/s), wind direction (WD) (°), pressure (hpa), precipitation (Rain) (mm), four-component radiation (DR, UR, DLR, ULR, Rn) (W/m2), surface radiation temperature (IRT_1, IRT_2) (℃),Soil heat flux (Gs_1, Gs_2, Gs_3) (W/m2), multi-layer soil moisture (Ms_2cm, Ms_4cm, Ms_10cm, Ms_20cm, Ms_40cm, Ms_80cm, Ms_120cm, Ms_160cm) (%), multi-layer soil temperature (Ts_2cm, Ts_4cm, Ts_10cm, Ts_20cm, Ts_40cm, Ts_80cm, Ts_120cm, Ts_160cm) (℃), average soil temperature TCAV (℃). Please refer to Guo et al. (2020) for information of observation test or site, and Liu et al. (2013) for data processing.

0 2020-10-28

Multi-scale surface flux and meteorological elements observation dataset in the Haihe River Basin (Huailai station-automatic weather station-10m tower, 2014)

The dataset contains the observation data of the 10m tower automatic weather station on January 13, 2014 at solstice on December 31, 2014.The station is located in east garden town, huailai county, hebei province.The latitude and longitude of the observation point is 115.7880E, 40.3491N, and the altitude is 480m. The automatic weather station is installed on a 10m tower, the acquisition frequency is 30s, and the output time is 10min.The observation factors include air temperature and relative humidity (5m), and the direction is due north.The wind speed (10m), the wind direction (10m), the direction is due to the north;Air pressure (installed in waterproof box);Rainfall (10m);The four-component radiation (5m), the direction is due to the south;The infrared surface temperature (5m), the arm is facing south, and the probe is facing vertically downward.The soil temperature and humidity probe was buried 1.5m south of the meteorological tower. The soil temperature probe was buried at a depth of 2cm, 4cm, 10cm, 20cm, 40cm, 80cm, 120cm and 160cm. The soil moisture sensor was buried at a depth of 2cm, 4cm, 10cm, 20cm, 80cm, 120cm and 160cm.The average soil temperature was buried 2,4 cm underground.Soil hot flow plates (3) are buried in the ground 6cm.Processing and quality control of observation data :(1) ensure 144 data per day (every 10min). If data is missing, it will be marked by -6999;(2) eliminate the moments with duplicate records;(3) data that is obviously beyond the physical meaning or the range of the instrument is deleted;(4) the format of date and time is unified, and the date and time are in the same column.For example, the time is: 2014-6-10-10:30.January 13 - March 26 due to probe problems, soil moisture data at a depth of 20cm was wrong;From January 21 to March 26, due to probe problems, soil moisture data at a depth of 120cm was wrong;From March 17 to March 26 due to probe problems, soil moisture data at depth of 2,4,10,20 cm were wrong.The soil heat flux G2 had a problem on June 16, BBB 0, July 9 due to the hot plate problem. Guo et al, 2020 is used for site introduction and Liu et al, 2013 for data processing

0 2020-10-27

Multi-scale surface flux and meteorological elements observation dataset in the Hai River Basin (Huailai station-automatic weather station-40m tower, 2017)

The data set contains observations from the 40m tower automatic weather station on January 1, 2017 at solstice on December 31, 2017.The station is located in east garden town, huailai county, hebei province.The latitude and longitude of the observation point is 115.7923E, 40.3574N, and the altitude is 480m. The automatic weather station is installed on a 40m tower with a collection frequency of 30s and an output of 10min.The observation factors include 7 layers of air temperature and relative humidity (3m, 5m, 10m, 15m, 20m, 30m, 40m), and the direction is due north.Wind speed on the 7th floor (3m, 5m, 10m, 15m, 20m, 30m, 40m), wind direction (10m), heading due north;Air pressure (installed in waterproof box);Rainfall (3m);Four-component radiation and photosynthetic effective radiation (4m), pointing due south;Infrared surface temperature (8m), the arm is facing south, the probe is facing vertically downward;The soil temperature and humidity probe was buried 1.5m south of the meteorological tower. The soil temperature probe was buried at a depth of 2cm, 4cm, 10cm, 20cm, 40cm, 80cm, 120cm and 160cm. The soil moisture sensor was buried at a depth of 2cm, 4cm, 10cm, 20cm, 80cm, 120cm and 160cm.The average soil temperature was buried 2,4 cm underground.Soil hot flow plates (3) are buried in the ground 6cm. Processing and quality control of observation data :(1) ensure 144 data per day (every 10min). If data is missing, it will be marked by -6999;(2) eliminate the moments with duplicate records;(3) data that is obviously beyond the physical meaning or the range of the instrument is deleted;(4) the format of date and time is unified, and the date and time are in the same column.For example, the time is: 2017-6-1010:30. Guo et al, 2020 is used for site introduction and Liu et al, 2013 for data processing

0 2020-10-27