Qilian Mountains integrated observatory network: Dataset of Qinghai Lake integrated observatory network (an observation system of Meteorological elements gradient of Yulei station on Qinghai lake, 2019)

This dataset includes data recorded by the Qinghai Lake integrated observatory network obtained from an observation system of Meteorological elements gradient of Yulei station on Qinghai lake from October 23 to December 31, 2019. The site (100° 29' 59.726'' E, 36° 35' 27.337'' N) was located on the Yulei Platform in Erlangjian scenic area, Qinghai Province. The elevation is 3209m. The installation heights and orientations of different sensors and measured quantities were as follows: air temperature and humidity profile (HMP155; 12 and 12.5 m above the water surface, towards north), wind speed and direction profile (windsonic; 14 m above the water surface, towards north) , rain gauge (TE525M; 10m above the water surface in the eastern part of the Yulei platform ), four-component radiometer (NR01; 10 m above the water surface, towards south), one infrared temperature sensors (SI-111; 10 m above the water surface, towards south, vertically downward), photosynthetically active radiation (LI190SB; 10 m above the water surface, towards south), water temperature profile (109, -0.2, -0.5, -1.0, -2.0, and -3.0 m). The observations included the following: air temperature and humidity (Ta_12 m, Ta_12.5 m; RH_12 m, RH_12.5 m) (℃ and %, respectively), wind speed (Ws_14 m) (m/s), wind direction (WD_14 m) (°) , precipitation (rain) (mm), four-component radiation (DR, incoming shortwave radiation; UR, outgoing shortwave radiation; DLR_Cor, incoming longwave radiation; ULR_Cor, outgoing longwave radiation; Rn, net radiation) (W/m^2), infrared temperature (IRT_1) (℃), photosynthetically active radiation (PAR) (μmol/ (s m-2)), water temperature (Tw_20cm、Tw_50cm、Tw_100cm、Tw_200cm、Tw_300cm) (℃). The data processing and quality control steps were as follows: (1) The AWS data were averaged over intervals of 10 min for a total of 144 records per day. The other data in addition to the four-component radiation data during January 1 to October 12 were missing because the malfunction of datalogger. The missing data were denoted by -6999. (2) Data in duplicate records were rejected. (3) Unphysical data were rejected. (4) The data marked in red are problematic data. (5) The format of the date and time was unified, and the date and time were collected in the same column, for example, date and time: 2018-1-1 10:30. Moreover, suspicious data were marked in red.

0 2020-07-01

Qilian Mountains integrated observatory network: Dataset of Qinghai Lake integrated observatory network (an observation system of Meteorological elements gradient of the temperate steppe, 2019)

This dataset includes data recorded by the Qinghai Lake integrated observatory network obtained from an observation system of Meteorological elements gradient from April 26 to December 31 in 2019. The site (100°14'8.99"E, 37°14'49.00"N) was located in the south of Sanjiaocheng sheep breeding farm, Gangcha County, Qinghai Province. The elevation is 3210m.The installation heights and orientations of different sensors and measured quantities were as follows: air temperature and humidity profile (HMP155; 3, 5, 10 m, towards north), wind speed and direction profile (windsonic; 3, 5, 10m, towards north), air pressure (PTB110; 3 m), rain gauge (TE525M; towards north), four-component radiometer (CNR4; 6m, towards south), two infrared temperature sensors (SI-111; 6 m, towards south, vertically downward), photosynthetically active radiation (PQS1; 6 m, towards south, each with one vertically downward and one vertically upward, soil heat flux (HFP01; 3 duplicates below the vegetation; -0.06 m), soil temperature profile (109; -0.05、-0.10、-0.20、-0.40、-0.80、-1.20、-2.00、-3.00 and -5.00m), soil moisture profile (CS616; -0.05、-0.10、-0.20、-0.40、-0.80、-1.20、-2.00、-3.00 and -5.00m). The observations included the following: air temperature and humidity (Ta_3 m, Ta_5 m, Ta_10 m; RH_3 m, RH_5 m, RH_10 m) (℃ and %, respectively), wind speed (Ws_3 m, Ws_5 m, Ws_10 m) (m/s), wind direction (WD_3 m, WD_5 m, WD_10 m) (°), precipitation (rain) (mm), air pressure (press) (hpa), infrared temperature (IRT_1 and IRT_2) (℃), photosynthetically active radiation of upward and downward (PAR_D_up and PAR_D_down) (μmol/ (s m-2)), four-component radiation (DR, incoming shortwave radiation; UR, outgoing shortwave radiation; DLR_Cor, incoming longwave radiation; ULR_Cor, outgoing longwave radiation; Rn, net radiation) (W/m^2), soil heat flux (Gs_1, Gs_2, and Gs_3) (W/m^2), soil temperature (Ts_5cm、Ts_10cm、Ts_20cm、Ts_40cm、Ts_80cm、Ts_120cm、Ts_200cm、Ts_300cm、Ts_400cm) (℃), soil moisture (Ms_5cm、Ms_10cm、Ms_20cm、Ms_40cm、Ms_80cm、Ms_120cm、Ms_200cm、Ms_300cm、Ms_400cm) (%, volumetric water content). The data processing and quality control steps were as follows: (1) The AWS data were averaged over intervals of 10 min for a total of 144 records per day. The missing data were denoted by -6999. (2) Data in duplicate records were rejected. (3) Unphysical data were rejected. (4) The data marked in red are problematic data. (5) The format of the date and time was unified, and the date and time were collected in the same column, for example, date and time: 2018/8/31 10:30.

0 2020-07-01

Qilian Mountains integrated observatory network: Dataset of Qinghai Lake integrated observatory network (an observation system of Meteorological elements gradient of Alpine meadow and grassland ecosystem Superstation, 2019)

This dataset includes data recorded by the Qinghai Lake integrated observatory network obtained from an observation system of Meteorological elements gradient of the Alpine meadow and grassland ecosystem Superstation from September 3 in 2018 to December 31 in 2019. The site (98°35′41.62″E, 37°42′11.47″N) was located in the alpine meadow and alpine grassland ecosystem, near the SuGe Road in Tianjun County, Qinghai Province. The elevation is 3718m. The installation heights and orientations of different sensors and measured quantities were as follows: air temperature and humidity profile (HMP155; 3, 5, 10, 15, 20, 30, and 40 m, towards north), wind speed and direction profile (windsonic; 3, 5, 10, 15, 20, 30, and 40 m, towards north), air pressure (PTB110; 3 m), rain gauge (TE525M; 10m of the platform in west by north of tower), four-component radiometer (CNR4; 6m, towards south), two infrared temperature sensors (SI-111; 6 m, towards south, vertically downward), photosynthetically active radiation (PQS1; 6 m, towards south, each with one vertically downward and one vertically upward, soil heat flux (HFP01; 3 duplicates below the vegetation; -0.06 m), soil temperature profile (109; -0.05、-0.10、-0.20、-0.40、-0.80、-1.20、-2.00、-3.00 and -4.00m), soil moisture profile (CS616; -0.05、-0.10、-0.20、-0.40、-0.80、-1.20、-2.00、-3.00 and -4.00m). The observations included the following: air temperature and humidity (Ta_3 m, Ta_5 m, Ta_10 m, Ta_15 m, Ta_20 m, Ta_30 m, and Ta_40 m; RH_3 m, RH_5 m, RH_10 m, RH_15 m, RH_20 m, RH_30 m, and RH_40 m) (℃ and %, respectively), wind speed (Ws_3 m, Ws_5 m, Ws_10 m, Ws_15 m, Ws_20 m, Ws_30 m, and Ws_40 m) (m/s), wind direction (WD_3 m, WD_5 m, WD_10 m, WD_15 m, WD_20 m, WD_30m, and WD_40 m) (°), precipitation (rain) (mm), air pressure (press) (hpa), infrared temperature (IRT_1 and IRT_2) (℃), photosynthetically active radiation of upward and downward (PAR_D_up and PAR_D_down) (μmol/ (s m-2)), four-component radiation (DR, incoming shortwave radiation; UR, outgoing shortwave radiation; DLR_Cor, incoming longwave radiation; ULR_Cor, outgoing longwave radiation; Rn, net radiation) (W/m^2), soil heat flux (Gs_1, Gs_2, and Gs_3) (W/m^2), soil temperature (Ts_5cm、Ts_10cm、Ts_20cm、Ts_40cm、Ts_80cm、Ts_120cm、Ts_200cm、Ts_300cm、Ts_400cm) (℃), soil moisture (Ms_5cm、Ms_10cm、Ms_20cm、Ms_40cm、Ms_80cm、Ms_120cm、Ms_200cm、Ms_300cm、Ms_400cm) (%, volumetric water content). The data processing and quality control steps were as follows: (1) The AWS data were averaged over intervals of 10 min for a total of 144 records per day. The missing data were denoted by -6999. (2) Data in duplicate records were rejected. (3) Unphysical data were rejected. (4) The data marked in red are problematic data. (5) The format of the date and time was unified, and the date and time were collected in the same column, for example, date and time: 2018/8/31 10:30. Moreover, suspicious data were marked in red.

0 2020-07-01

Qilian Mountains integrated observatory network: Dataset of Qinghai Lake integrated observatory network (an observation system of Meteorological elements gradient of Subalpine shrub, 2019)

This dataset includes data recorded by the Qinghai Lake integrated observatory network obtained from an observation system of Meteorological elements gradient of the Subalpine shrub from April 28 to December 31, 2019. The site (100°6'3.62"E, 37°31'15.67"N) was located in the subalpine shrub ecosystem, near the Gangcha County, Qinghai Province. The elevation is 3495m. The installation heights and orientations of different sensors and measured quantities were as follows: air temperature and humidity profile (HMP155; 3, 5 and 10 m, towards north), wind speed and direction profile (windsonic; 3, 5 and 10 m, towards north), air pressure (PTB110; 3 m), rain gauge (TE525M; 2 m of the platform in west by north of tower), four-component radiometer (CNR4; 6m, towards south), two infrared temperature sensors (SI-111; 6 m, towards south, vertically downward), photosynthetically active radiation (PQS1; 6 m, towards south, each with one vertically downward and one vertically upward, soil heat flux (HFP01; 3 duplicates below the vegetation; -0.06 m), soil temperature profile (109; -0.05、-0.10、-0.20、-0.40、-0.80、-1.20、-2.00、-3.00 and -4.00m), soil moisture profile (CS616; -0.05、-0.10、-0.20、-0.40、-0.80、-1.20、-2.00、-3.00 and -4.00m). The observations included the following: air temperature and humidity (Ta_3 m, Ta_5 m, and Ta_10 m; RH_3 m, RH_5 m, and RH_10 m) (℃ and %, respectively), wind speed (Ws_3 m, Ws_5 m, and Ws_10 m) (m/s), wind direction (WD_3 m, WD_5 m and WD_10 m) (°), precipitation (rain) (mm), air pressure (press) (hpa), infrared temperature (IRT_1 and IRT_2) (℃), photosynthetically active radiation of upward and downward (PAR_D_up and PAR_D_down) (μmol/ (s m-2)), four-component radiation (DR, incoming shortwave radiation; UR, outgoing shortwave radiation; DLR_Cor, incoming longwave radiation; ULR_Cor, outgoing longwave radiation; Rn, net radiation) (W/m^2), soil heat flux (Gs_1, Gs_2, and Gs_3) (W/m^2), soil temperature (Ts_5cm、Ts_10cm、Ts_20cm、Ts_40cm、Ts_80cm、Ts_120cm、Ts_200cm、Ts_300cm、Ts_500cm) (℃), soil moisture (Ms_5cm、Ms_10cm、Ms_20cm、Ms_40cm、Ms_80cm、Ms_120cm、Ms_200cm、Ms_300cm、Ms_500cm) (%, volumetric water content). The data processing and quality control steps were as follows: (1) The AWS data were averaged over intervals of 10 min for a total of 144 records per day. The missing data were denoted by -6999. (2) Data in duplicate records were rejected. (3) Unphysical data were rejected. (4) The data marked in red are problematic data. (5) The format of the date and time was unified, and the date and time were collected in the same column, for example, date and time: 2018/8/31 10:30. Moreover, suspicious data were marked in red.

0 2020-06-30

China meteorological assimilation datasets for the SWAT model - soil temperature version 1.0 (2009-2013)

CMADS (The China Meteorological Assimilation Driving Datasets for The SWAT model) The soil temperature component (hereinafter referred to as cmads-st) USES The China Meteorological Administration Land Data Assimilation System [CLDAS] to force The common Land surface model3.5 [CLM3.5]) (Community Land model, numerical simulation of Land surface, circulation 10 spin - up simulation, get basic stability model initial field, and obtain high space-time resolution of soil temperature data sets, eventually hierarchical data model is utilized to extract, quality control, a nested loop, re-sampling, and a variety of technologies such as bilinear interpolation method is finally established. Cmads-st series data set space covers the whole east Asia (0 ° n-65 ° N, 60 ° e-160 ° E), the spatial resolution is respectively cmads-st V1.0 version: 1/3 °, cmads-st V1.1 version: 1/4 °, cmads-st V1.2 version: 1/8 ° and cmads-st V1.3 version:The above resolutions are daily (the basic resolution of the soil temperature component output in CLM3.5 mode is 1/16°, which ensures the highest resolution of the cmads-st data set is 1/16°). The time scale is 2009-2013.The data set published on this page is the cmads-st V1.0 data set (spatial resolution :1/3°).Temporal resolution: daily.Space coverage: east Asia (0 ° n-65 ° N, 60 ° e-160 ° E).Number of stations: 58,500.Supply factors: the average daily soil temperature of 10 layers (the depth of node hierarchy is in order: the first layer :0.00710063521m; the second layer :0.0279249996m; the third layer :0.0622585751m; the fourth layer :0.118865065m; the fifth layer :0.2121934m; the sixth layer :0.3660658m; the seventh layer :0.619758487m; the eighth layer :1.03802705m; the ninth layer :1.72763526m;Floor 10 :2.8646071m).Provide data format: TXT. The path of the cmads-st V1.0 soil temperature data set is: CMADS - ST - V1.0\2009 \ layer1 V1.0\2009 \ layer10 to CMADS - ST CMADS - ST - V1.0\2010 \ layer1 V1.0\2010 \ layer10 to CMADS - ST CMADS - ST - V1.0\2011 \ layer1 V1.0\2011 \ layer10 to CMADS - ST CMADS - ST - V1.0\2012 \ layer1 V1.0\2012 \ layer10 to CMADS - ST CMADS - ST - V1.0\2013 \ layer1 V1.0\2013 \ layer10 to CMADS - ST Cmads-st V1.0 subset file path and file name description Where, daily soil temperature (ten layers) is shown in layer1-layer10\.Are located in the following directories (take 2009 as an example): \2009\layer1\ 2009 layer1 (0.00710063521m) soil temperature directory \2009\layer2\ 2009 layer2 (0.0279249996m) soil temperature directory \2009\layer3\ 2009 layer3 (0.0622585751m) soil temperature catalogue \2009\layer4\ 2009 layer4 (0.118865065m) soil temperature catalogue \2009\layer5\ 2009 layer5 (0.2121934m) soil temperature catalogue \2009\layer6\ 2009 layer6 (0.3660658m) soil temperature catalogue \2009\layer7\ 2009 layer7 (0.619758487m) soil temperature directory \2009\layer8\ 2009 layer8 (1.03802705m) soil temperature catalogue \2009\layer9\ 2009 layer9 (1.72763526m) soil temperature catalogue \2009\layer10\ 2009 10th layer (2.8646071m) soil temperature catalogue

0 2020-06-23

The Basic datasets of Urumqi river basin in Chinese Cryospheric Information System

Chinese Cryospheric Information System is a comprehensive information system for the management and analysis of Chinese cryospheric data. The establishment of Chinese Cryospheric Information System is to meet the needs of earth system science, and provide parameters and verification data for the development of response and feedback models of permafrost, glacier and snow cover to global changes under GIS framework. On the other hand, the system collates and rescues valuable cryospheric data to provide a scientific, efficient and safe management and analysis tool. Chinese Cryospheric Information System contains three basic databases of different research regions. The basic database of Urumqi river basin is one of three basic databases, which covers the Urumqi river basin in tianshan mountain, east longitude 86-89 °, and north latitude 42-45 °, mainly containing the following data: 1. Cryospheric data.Include: Distribution of glacier no. 1 and glacier no. 2; 2. Natural environment and resources.Include: Terrain digital elevation: elevation, slope, slope direction; Hydrology: current situation of water resource utilization;Surface water; Surface characteristics: vegetation type;Soil type;Land resource evaluation map;Land use status map; 3. Social and economic resources: a change map of human action; Please refer to the documents (in Chinese): "Chinese Cryospheric Information System design. Doc" and "Chinese Cryospheric Information System data dictionary. Doc".

0 2020-06-23

MODIS multi-spectral remote sensing images dataset of 15 key node regions of Pan third pole (2000-2016)

The MODIS Terra MOD09A1 Version 6 product provides an estimate of the surface spectral reflectance of Terra MODIS Bands 1 through 7 corrected for atmospheric conditions such as gasses, aerosols, and Rayleigh scattering. Along with the seven 500 m reflectance bands is a quality layer and four observation bands. For each pixel, a value is selected from all the acquisitions within the 8-day composite period. The criteria for the pixel choice include cloud and solar zenith. When several acquisitions meet the criteria the pixel with the minimum channel 3 (blue) value is used.Based on MCD12Q1 data from 2001 to 2016, MatLab was used to tailor the masks of 18 key nodes in Southeast Asia and middle East. Finally. This dataset is based on the data of MOD09A1 V6 synthesized in 8 days from 2001 to 2016 downloaded by the National Aeronautics and Space Administration (NASA). The spatial resolution is 500 meters, and MatLab is used to mask cut the data in the research area, and Finally, the land cover data of 18 key nodes from 2001 to 2016 were obtained.. The 18 key regions covered by the data mainly include: Bangkok, Port of Myanmar, Chittagong, Colombo, Dhaka, Gwadar, Hambantot, Huangjing and Malacca, Kwantan, Maldives, Mandalay, Sihanouk, Vientiane, Yangon, etc.).

0 2020-06-18

The presert state map of land use over Yinchuan (1:500,000)

This data is digitized from the "Yinchuan Land Use Status Map" of the drawing, which is a key scientific and technological research project in the "Seventh Five-Year Plan" of the country: "Three North" Shelter Forest Remote Sensing Comprehensive Survey, one of the series maps of Ganqingning Type Area, with the following information: * Chief Editor: Wang Yimou * Deputy Editors: Feng Yushun, You Xianxiang, Shen Yuancun * Editors: Wang Xian, Wang Jingquan, Qiu Mingxin, Quan Zhijie, Mou Xindai, Qu Chunning, Yao Fafen, Qian Tianjiu, Huang Autonomy, Mei Chengrui, Han Xichun, Li Yujiu, Hu Shuangxi * Responsible Editor: Huang Meihua * Editorial: Feng Yushun and Yao Fafen * Compilation: Yao Fafen, Li Zhenshan, Wang Xizhang, Zhu Che, Ma Bin, Yang Ping * Editors: Feng Yushun and Wang Yimou * Qing Hua: Wang Jianhua, Yao Fafen, Ma Bin, Li Zhenshan * Cartographic unit: compiled by Desert Research Office of Chinese Academy of Sciences * Publishing House: Xi 'an Map Publishing House * Scale: 1: 500000 * Publication time: not yet available 2. File Format and Naming Data is stored in ESRI Shapefile format, including the following layers: Desertification type map (desert), Yinchuan landuse map (landuse), railway, residential _ poly, residential, River, Road, Water_poly 3. Data Fields and Attributes Type number land_type Desert shape Paddy field Paddy field 12 Irrigated field 131 Plain non-irrigated field Valley non-irrigate field Slope non-irrigated field, 133 slope dryland 134 dryland Terrace non-irrigat field 14 Vegetable plot vegetable plot 15 Abandoned farmland Orchard orchard 31 Woodland ......... Specific attribute contents refer to data documents 2. Projection information: Angular Unit: Degree (0.017453292519943295) Prime Meridian: Greenwich (0.000000000000000000) Datum: D_Beijing_1954 Spheroid: Krasovsky_1940 Semimajor Axis: 6378245.000000000000000000 Semiminor Axis: 6356863.018773047300000000 Inverse Flattening: 298.300000000000010000

0 2020-06-11

The landuse map of Dunhuang at 1:500,000 scale

This data is the dunhuang land use status map digitized from the drawings. This map is one of the key scientific and technological research projects of the seventh five-year plan of China: comprehensive remote sensing survey of shelterbelt in the third north, and one of the series maps of the type area of gan qingning. The information is as follows: * chief editor: wang yimou, * deputy chief editor: feng yusun, you xianxiang, shenyuan village *, qing painting: wang jianhua, yao fafen, Yang ping * drawing: feng yu-sun, yao fa-fen, wang jianhua, zhao yanhua, li weimin * cartographic unit: desert laboratory, Chinese academy of sciences * publishing house: xi 'an map publishing house 2. File format and naming The data is stored in ESRI Shapefile format, including the following layers: Dunhuang land use status map, rivers, roads, lakes, railways, residential land, reservoirs, desertification 3. Data fields and properties Type code land resource class (Land_type) 12. Irrigated field 31 Woodland 311 Woodland 312 Joe irrigation mixed forest land (tree-shurb mixed) 321 Shrub land (Shrub) Sparse shrub 33 Sparse woods In winter and spring of 4111 Meadow grassland, Meadow grassland in the spring and winter) 4112 winter and spring of salinization meadow grassland, Saline meadow grassland in the spring and winter) 4112 winter and spring of salinization meadow grassland, Saline meadow grassland in the spring and winter) In winter and spring of 4113 salt meadow grassland (Salty soil meadow grassland in the spring and winter) 4122 gritty desert grassland autumn grass (Gravely desert - steppe grassland in autumn and winter) 4124 mountain desert grassland winter and spring pastures (Mountainous desert - steppe grassland in winter and spring) 4134 four seasons mountain desert grassland, Mountainous desert steppe in four seasons) Sandy desert steppe in autumn and winter Gravely desert steppe in autumn and winter Earthy desert steppe in four seasons Alpine steppe in four seasons 51 Urban and town land 52 Village land 73 Reservoir and pond 74 Reed marshes Tidal flat 81 Desert land 82 Saline-alkali land 83 Marshes 84 Sandy land Sandy flat and dry valley 86 Bare land 87 Gobi Gobi 88 Exposed rock Flat sandy land Compound dunes Undulatory sand-overlying land Dunes and barchan chain The sand ridge (Longitudinal dune) Check dune

0 2020-06-11

1:100,000 landuse dataset of Sichuan province (2000)

This data was derived from "1: 100,000 Land Use Data of China". Based on Landsat MSS, TM and ETM remote sensing data, 1: 100,000 Land Use Data of China was compiled within three years by a remote sensing scientific and technological team of 19 research institutes affiliated to the Chinese Academy of Sciences, which was organized by the “Remote Sensing Macroinvestigation and Dynamic Research on the National Resources and Environment", one of the major application programs in Chinese Academy of Sciences during the "Eighth Five-year Plan". This data adopts a hierarchical land cover classification system, which divides the country into 6 first-class categories (cultivated land, forest land, grassland, water area, urban and rural areas, industrial and mining areas, residential land and unused land) and 31 second-class categories. This is the most accurate land use data product in our country at present. It has already played an important role in national land resources survey, hydrology and ecological research.

0 2020-06-11