Groundwater level observation data of Selincuo Lake (2017)

This is the groundwater level observation data set of Selincuo Lake. It can be used in Climatology, Environmental Change, Hydrologic Process in cold regions and other disciplinary areas. The data is observed from June 20, 2017 to August 18, 2017. It is measured by automatic water gauge and a piece of data is recorded every 60 minutes. The data includes the water pressure and water temperature of the groundwater level observation point on the west bank of Selincuo Lake. The original data is precise, with the pressure accurate to 0.001kP and the water temperature 0.001℃. The original data forms a continuous time series after quality control. And the daily mean index data is obtained through calculation. The data is stored as an excel file.

0 2020-05-28

Characteristics of Hydrochemistry in Lake Balkhash Catchment, Kazakhstan (2019)

In this study, major ions in water samples from the Lake Balkhash catchment were analyzed using an integration of mathematical statistics, Piper three-line map, Gibbs model and principal component analysis (PCA). Water types and main mechanisms controlling the hyrdochemistry presented a visible spatial heterogeneity. The chemical composition of lake waters was dominant with SO4-Na and Cl-Na, whereas river waters were classified as HCO3-Ca. The chemical composition downward the Ili River waters evolved from bicarbonate to sulfate and chlorination type. Gibbs model suggested that the main mechanisms control the lake water chemistry were evaporation-crystallization processes and major ions in river water were affected by the processes of rock-weathering and evaporation. The controlling factors in water chemistry changed from the upstream to downstream of the Ili River, which may be contributed to the lager impacts of precipitation and discharge of snow melting water on the upper waters, whereas more influence of evaporation on the lower waters. Furthermore, PCA analysis showed that human activities also play an important role in the chemical composition of lake water, middle and lower reaches of Ili River and other rivers.

0 2020-05-26

Characteristics of hydrochemistry in Lake Aral Sea Catchment (20190726)

The data set is the multi parameter data of water samples collected from the Lake Aral Sea basin in 2019, which is used to obtain the basic physical and chemical index data of the lake and prepare for the subsequent modern observation and research of the lake. The data observation time is July 26, 2019. The measuring instrument is YSI EXO2 water quality multi parameter measuring instrument. Before each measurement, the instrument is calibrated according to the altitude of the lake and the local air pressure. The measurement interval is set as 1s, and the delivery speed is slow, so as to ensure the high continuity of data acquisition. The original data obtained includes the measurement data exposed in the air above the water surface, which is eliminated in the later processing. The data is stored in Excel file.

0 2020-05-26

Data set of groundwater quality in the lower reaches of Tarim River (2000-2007)

In the lower reaches of Tarim River, groundwater is the only water source to maintain the survival of natural vegetation. The change of groundwater level directly affects the growth and decline of plants and controls the evolution and composition of plant communities. Strengthening the research on chemical characteristics of groundwater is an important content of water resources quality evaluation, which is of great significance to the utilization mode, sustainable development, management and protection and construction of ecological environment of watershed water resources. At fixed points and on a regular basis, 40 groundwater level monitoring wells in the lower reaches of the Tarim River were collected with groundwater samples, sealed and sent to the laboratory for chemical analysis. The analysis content includes 13 indexes including salinity, pH, CO3=, HCO3-, Cl-, SO4=, Ca++, Mg++, Na+, K+, etc. The analysis methods are as follows: (1) Salinity: gravimetric method; (2) Total alkalinity, HCO3- and CO3=: double indicator titration; (3) Cl-: silver nitrate titration; (4) SO4 =: EDTA volumetric method and barium chromate photometric method; (5) Total hardness: EDTA volumetric method; (6) Ca++, Mg++: EDTA volumetric method and atomic absorption spectrophotometry;

0 2020-04-02

Monitoring dataset of Gansu water quality automatic station (2012-2014)

This data is from the central station of environmental monitoring in gansu province. The data includes three observation elements that are disclosed on the network, namely PH, permanganate index and ammonia nitrogen. The data format is a text file. The first column is the city name, the second column is PH, the third column is permanganate index, the fourth column is ammonia nitrogen, and the fifth column is the observation date. The data include 6 sections of gushuizi, niubei village, wufo temple, shichuan bridge, xincheng bridge and bikou. Gansu section of the Yellow River: xincheng bridge (lanzhou upstream section), shichuan bridge (lanzhou - baiyin junction section), wufo temple (gansu-ningxia junction section), niubei village (gansu-shaanxi junction section).Bailong river wudu section :(section of gushuizi village). Lanzhou city bridge automatic water quality monitoring station is located in xigu district, lanzhou city, gansu province.Point coordinates 103 degrees 35 minutes 02 seconds east longitude, 36 degrees 07 minutes 20 seconds north latitude.Yellow River system (Yellow River main stream), state - controlled provincial boundary section.By lanzhou city environmental monitoring station custody.It's 35 kilometers away.Built in March 2001. PH: the index that characterizes the acidity and alkalinity of water. When the pH value is 7, it is neutral, less than 7 is acidic, and greater than 7 is alkaline.The pH value of natural surface water is generally between 6 and 9. When algae grow in the water, they absorb carbon dioxide due to photosynthesis, resulting in an increase in surface pH value. Permanganate index (CODMn) : the amount consumed when treating surface water samples with potassium permanganate as the oxidant, expressed as mg/L of oxygen.Under these conditions, reductive inorganic substances (ferrous salts, sulphides, etc.) and organic pollutants in water can consume potassium permanganate, which is often used as a comprehensive indicator of the degree of surface water pollution by organic pollutants.Also known as the chemical oxygen demand potassium permanganate method, as distinct from the chemical oxygen demand (COD) of the potassium dichromate method, which is often used to monitor wastewater discharge. Ammonia nitrogen (nh3-n) : ammonia nitrogen exists in water in the form of dissolved ammonia (also known as free ammonia, NH3) and ammonium salt (NH4+). The ratio of the two depends on the pH value and water temperature of the water, and the content of ammonia nitrogen is expressed by the amount of N element.The main sources of ammonia nitrogen in the water are domestic sewage and some industrial wastewater (such as coking and ammonia synthesis industry) and surface runoff (mainly refers to the fertilizer used in farmland entering rivers, lakes, etc.). This data will be updated automatically and continuously according to the data source.

0 2020-04-01

Water temperature observation data at Nam Co Lake in Tibet (2011-2014)

This data includes the daily average water temperature data at different depths of Nam Co Lake in Tibet which is obtained through field monitoring. The data is continuously recorded by deploying the water quality multi-parameter sonde and temperature thermistors in the water with the resolution of 10 minutes and 2 hours, respectively, and the daily average water temperature is calculated based on the original observed data. The instruments and methods used are very mature and data processing is strictly controlled to ensure the authenticity and reliability of the data; the data has been used in the basic research of physical limnology such as the study of water thermal stratification, the study of lake-air heat balance, etc., and to validate the lake water temperature data derived from remote sensing and different lake models studies. The data can be used in physical limnology, hydrology, lake-air interaction, remote sensing data assimilation verification and lake model research.

0 2020-03-16

Deuterium and Oxygen-18 of precipitation, river and soil water in Hulugou small watershed (June 2012 – June 2013)

1、 Data Description: from June 2012 to June 2013, the rainfall, river water and soil water in the basin were sampled and analyzed. 2、 Sampling location: rainfall sampling point is located in Qilian station of Chinese Academy of Sciences, with longitude and latitude of 99 ° 52 ′ 39.4 ″ e, 38 ° 15 ′ 47 ″ n; river water sampling point is located at the outlet of hulugou watershed, with longitude and latitude of 99 ° 52 ′ 47.7 ″ e, 38 ° 16 ′ 11 ″ n, with sampling frequency of once a week; soil water sampling point is located in the middle and lower part of hongnigou catchment, with sampling depth of 180cm underground and longitude and latitude of 99 ° 52 ′ 25.98 ″ E, 38 ° 15 ′ 36.11 ″ n, only one sample is taken. 3、 Test method: thermofisher TM flash 2000 and mat 253 gas stable isotope ratio mass spectrometer were used to measure the samples in 2012; l2130-i ultra-high precision liquid water and water vapor isotope analyzer was used to measure the samples in 2013.

0 2020-03-12

River temperature and near-surface temperature observations of Hulugou watershed from Jul to Sep, 2012

The observation frequency is 1 time / 30 minutes with hobo automatic temperature recorder. No. 01: the observation point is located at the exit of zone III divided by Cold and Arid Regions Environmental and Engineering Research Institute, Chinese Academy of Sciences, and the boundary point between the cold desert zone and the cold meadow zone. The coordinates of the observation point (99 ° 53 ′ 37 ″ e, 38 ° 13 ′ 34 ″ n) are 100cm from the surface of the air temperature recorder. The observation period is from July 28 to September 2, 2012. No. 02: the observation point is located at the exit of No. 2 area divided by Cold and Arid Regions Environmental and Engineering Research Institute, Chinese Academy of Sciences, where the terrain is gentle, at the outlet of the alluvial delta valley where there is no other tributary flowing in. The observation point coordinates (99 ° 52 ′ 58 ″ e, 38 ° 14 ′ 36 ″ n) the temperature recorder in the air is 120cm from the ground surface. The observation period is from July 4, 2012 to September 6, 2012

0 2020-03-12

The anions and cations of river water and groundwater from the Hulugou catchment from July to Sep, 2015

1、 Data Description: the data includes the samples of anions and anions of river water and groundwater in hulugou small watershed from July to September 2015 for test and analysis. The sampling frequency is once every two weeks. 2、 Sampling location: (1) there are two river water sampling points. One is located at the outlet flow weir of hulugou small watershed in the upper reaches of Heihe River, with latitude and longitude of 99 ° 52 ′ 47.7 ″ E and 38 ° 16 ′ 11 ″ n. The second sampling point of the river is located at the outlet of hulugou area II at the upper reaches of Heihe River, with the longitude and latitude of 99 ° 52 ′ 58.40 ″ E and 38 ° 14 ′ 36.85 ″ n. (2) Underground water spring and well water sampling points are 20 m to the east of the drainage basin outlet, with longitude and latitude of 99 ° 52 ′ 50.9 ″ E and 38 ° 16 ′ 11.44 ″ n. The well water sampling point is located near the intersection of the East and West Branch ditches, with the longitude and latitude of 99 ° 52 ′ 45.38 ″ E and 38 ° 15 ′ 21.27 ″ n. 3、 Test method: the cation of sample is tested by inductively coupled plasma atomic emission spectrometer (ICP-AES), the test accuracy is 0.05mg/l, and the anion is tested by ion chromatograph (ics1100), the test accuracy is 0.002mg/l.

0 2020-03-12

The anions and cations of river water and groundwater from the Hulugou outlet form July to Sep, 2014

1、 Data Description: the data includes the anion and anion of river water and groundwater in hulugou small watershed from July to September 2014. The sampling frequency is once every two weeks. 2、 Sampling location: (1) there are two river water sampling points. One is located at the outlet flow weir of hulugou small watershed in the upper reaches of Heihe River, with latitude and longitude of 99 ° 52 ′ 47.7 ″ E and 38 ° 16 ′ 11 ″ n. The second sampling point of the river is located at the outlet of hulugou area II at the upper reaches of Heihe River, with the longitude and latitude of 99 ° 52 ′ 58.40 ″ E and 38 ° 14 ′ 36.85 ″ n. (2) Underground water spring and well water sampling points are 20 m to the east of the drainage basin outlet, with longitude and latitude of 99 ° 52 ′ 50.9 ″ E and 38 ° 16 ′ 11.44 ″ n. The well water sampling point is located near the intersection of the East and West Branch ditches, with the longitude and latitude of 99 ° 52 ′ 45.38 ″ E and 38 ° 15 ′ 21.27 ″ n. 3、 Test method: the sample cation is determined by inductively coupled plasma atomic emission spectrometer (ICP-AES), the test accuracy is 0.05mg/l, and the anion is determined by ion chromatograph (ics1100), the test accuracy is 0.002mg/l.

0 2020-03-12