High resolution surface morphology of Kuoqionggangri Glacier (2020-2021)

The dataset includes three high-resolution DSM data as well as Orthophoto Maps of Kuqionggangri Glacier, which were measured in September 2020, June 2021 and September 2021. The dataset is generated using the image data taken by Dajiang Phantom 4 RTK UAV, and the products are generated through tilt photogrammetry technology. The spatial resolution of the data reaches 0.15 m. This dataset is a supplement to the current low-resolution open-source topographic data, and can reflect the surface morphological changes of Kuoqionggangri Glacier from 2020 to 2021. The dataset helps to accurately study the melting process of Kuoqionggangri Glacier under climate change.

0 2022-06-09

Shaking table model test data for counter-bedding rock slope - load condition

Two types of seismic waves are used as dynamic inputs, one is synthetic waves, including sine waves and synthetic waves with different transcendence probabilities; the other is natural waves, selecting Wenchuan Wolong waves and Maoxian waves. The sine wave amplitude and frequency are unique, so they can be used to study the influence of ground motion parameters on the dynamic response of slopes; the natural waves are selected from the soil layer waves recorded at Wolong station and bedrock seismic waves recorded at Maoxian station during the Wenchuan earthquake, aiming to investigate the influence of different types of seismic wave inputs on the dynamic response of rock slopes by comparing the dynamic response law of slopes under the action of two types of seismic waves. White noise was performed after each loading to analyze the natural characteristics of the slope. A 10-minute stay after each loading was used to take pictures and observe the damage of the slope.

0 2022-03-20

Landform data of 90m of Sichuan Tibet traffic corridor (2009)

The ups and downs of the earth's surface become landforms. This data set is geomorphic data within the Sichuan Tibet traffic corridor area with an accuracy of 90m, and the data format is TIF. The data is digitized from the geomorphic Atlas of the people's Republic of China (1:1 million). The landforms of plains, hills and platforms are classified according to altitude and fluctuation. The accuracy of the data is low, and there are few types of landforms in the study area. The regional combination and vertical differentiation of various landforms are not only closely related to the changes of climate and hydrology and the distribution of soil and organisms, but also have a significant impact on industrial and agricultural production, water conservancy and transportation construction, but also an important factor that must be considered in the evolution and management of ecological environment.

0 2021-07-31

Optical stimulated luminescence ages of the mega-lakes in the northwestern Tibetan Plateau

Paleo-shorelines are widely developed in the lakes of the Tibetan Plateau (TP), which record the history of paleo-lake level changes. The development age of the mega-lake represented by the highest paleo-shoreline is controversial. The age of the shoreline or the mega-lake can be obtained by measuring the burial age of the shoreline sand in the sedimentary strata of the paleo-shoreline by using the optical stimulated luminescence (OSL) dating technology. This data includes the OSL ages of the highest paleo-shorelines of three lakes in the northwestern TP. The dating is based on the K-feldspar pIRIR method developed in recent years, which effectively solves the problem that the quartz OSL signal is not suitable for dating in the study area. This data can provide key information for the evolution history of the mega-lakes on the TP.

0 2021-05-31

1:1,000,000 Geomrphological map of the Heihe River basin (2000)

The geomorphic data of Heihe River are from the geomorphic Atlas of the people's Republic of China (1:1 million). This data is based on remote sensing image and other multi-source data integration and update. The main data used and referenced include: 1) remote sensing image data: TM and 2000's around 1990's nationwide About ETM image; 2) historical geomorphic map: 15 published 1 million geomorphic maps, two sets of 1:4 million geomorphic maps in China, 500000 or 1 million geomorphic sketches in all provinces and cities in China; 3) basic geographic data: 1:250000 basic geographic data and 250000 DEM data in China; 4) geological data: 1:500000 geological map in China; 5) relevant thematic maps: land use map, vegetation map and land resource map And so on. The interpretation method adopts the human-computer interaction method based on ArcGIS, and is carried out according to the interpretation sequence of hierarchical classification: the first layer: plain and mountain; the second layer: basic geomorphic types (28); the third layer: 10 genetic types; the fourth layer: secondary genetic types; the fifth layer: morphological difference classification types; the sixth layer: secondary morphological difference classification types; the seventh layer: slope, slope The eighth layer is the type of geomorphic material determined by material composition or lithology; the ninth layer is the combination of 1-7 layers of map spots. There are 441 geomorphic types and codes. Data fields include: fenfu (view frame number), name (attribute), class (code), sname (administrative division).

0 2020-06-08

Geomorphological of China 1:4,000,000

The integration of geomorphological information in western China was completed by a team led by Dr. Xie Chuanjie, Institute of Geography, Resources and Environment, Chinese Academy of Sciences. These include the national geomorphological database of 1: 4 million and the western geomorphological database of 1: 1 million. The geomorphological data of 1: 4 million are tracked, collected and collated by the Geography Department of the National Planning Commission of the Chinese Academy of Sciences, "China Geomorphological Map (1: 4 million)" edited by Li Bingyuan and "Geomorphological Map of China and Its Adjacent Areas (1: 4 million)" edited by Chen Zhiming. Scan and register the data, vectorize all registered maps by ArcMap software, and establish their own classification and code systems. Geomorphological types are divided into basic geomorphological types and morphological structure types (point, line and surface representation) according to map spots (common staining) and symbols. Data are divided into structural geomorphology and morphological geomorphology. Projection information: Projection: Albers False_Easting: 0.000000 False_Northing: 0.000000 Central_Meridian: 105.000000 Standard_Parallel_1: 25.000000 Standard_Parallel_2: 47.000000 Latitude_Of_Origin: 0.000000 Linear Unit: Meter (1.000000) Geographic Coordinate System: datumg Angular Unit: Degree (0.017453292519943299) Prime Meridian: <custom> (0.000000000000000000) Datum: D_Krasovsky_1940 Spheroid: Krasovsky_1940 Semimajor Axis: 6378245.000000000000000000 Semiminor Axis: 6356863.018773047300000000 Inverse Flattening: 298.300000000000010000

0 2020-06-08