Hourly meteorological forcing & land surface state dataset of Tibet Plateau with 10 km spatial resolution (2000-2010)

The near surface atmospheric forcing and surface state data set of the Tibetan Plateau was yielded by WRF model, time range: 2000-2010, space range: 25-40 °N, 75-105 °E, time resolution: hourly, space resolution: 10 km, grid number: 150 * 300. There are 33 variables in total, including 11 near surface atmospheric variables: temperature at 2m height on the ground, specific humidity at 2m height on the ground, surface pressure, latitudinal component of 10m wind field on the ground, longitudinal component of 10m wind field on the ground, proportion of solid precipitation, cumulative cumulus convective precipitation, cumulative grid precipitation, downward shortwave radiation flux at the surface, downward length at the surface Wave radiation flux, cumulative potential evaporation. There are 19 surface state variables: soil temperature in each layer, soil moisture in each layer, liquid water content in each layer, heat flux of snow phase change, soil bottom temperature, surface runoff, underground runoff, vegetation proportion, surface heat flux, snow water equivalent, actual snow thickness, snow density, water in the canopy, surface temperature, albedo, background albedo, lower boundary Soil temperature, upward heat flux (sensible heat flux) at the surface and upward water flux (sensible heat flux) at the surface. There are three other variables: longitude, latitude and planetary boundary layer height.

0 2020-01-16

A monthly air temperature and precipitation gridded dataset on 0.025° spatial resolution in China during(1951-2011)

Gridded climatic datasets with fine spatial resolution can potentially be used to depict the climatic characteristics across the complex topography of China. In this study we collected records of monthly temperature at 1153 stations and precipitation at 1202 stations in China and neighboring countries to construct a monthly climate dataset in China with a 0.025° resolution (~2.5 km). The dataset, named LZU0025, was designed by Lanzhou University and used a partial thin plate smoothing method embedded in the ANUSPLIN software. The accuracy of LZU0025 was evaluated based on three aspects: (1) Diagnostic statistics from the surface fitting model during 1951–2011. The results indicate a low mean square root of generalized cross validation (RTGCV) for the monthly air temperature surface (1.06 °C) and monthly precipitation surface (1.97 mm1/2). (2) Error statistics of comparisons between interpolated monthly LZU0025 with the withholding of climatic data from 265 stations during 1951–2011. The results show that the predicted values closely tracked the real true values with values of mean absolute error (MAE) of 0.59 °C and 70.5 mm, and standard deviation of the mean error (STD) of 1.27 °C and 122.6 mm. In addition, the monthly STDs exhibited a consistent pattern of variation with RTGCV. (3) Comparison with other datasets. This was done in two ways. The first was via comparison of standard deviation, mean and time trend derived from all datasets to a reference dataset released by the China Meteorological Administration (CMA), using Taylor diagrams. The second was to compare LZU0025 with the station dataset in the Tibetan Plateau. Taylor diagrams show that the standard deviation, mean and time trend derived from LZU had a higher correlation with that produced by the CMA, and the centered normalized root-mean-square difference for this index derived from LZU and CMA was lower. LZU0025 had high correlation with the Coordinated Energy and Water Cycle Observation Project (CEOP) - Asian Monsoon Project, (CAMP) Tibet surface meteorology station dataset for air temperature, despite a non-significant correlation for precipitation at a few stations. Based on this comprehensive analysis, we conclude that LZU0025 is a reliable dataset. LZU0025, which has a fine resolution, can be used to identify a greater number of climate types, such as tundra and subpolar continental, along the Himalayan Mountain. We anticipate that LZU0025 can be used for the monitoring of regional climate change and precision agriculture modulation under global climate change.

0 2019-11-18

Future projection data set of surface meteorological elements in East Asia (2006-2098)

The RCM employed is the International Center for Theoretical Physics (ICTP) Regional Climate Model version 4 (RegCM4, Giorgi et al., 2012). The domain used is the Coordinated Regional Climate Downscaling Experiment (CORDEX) Phase II East Asia domain, covering whole of China and its surrounding East Asia areas. The model is run at 25 km gird spacing, with its standard configuration of 18 vertical sigma layers with a model top at 10 hPa. Configuration of the model follows Gao et al. (2016, 2017), with land cover data over China was updated as reported by Han et al. (2015) to better represent the realistic vegetation. The initial and lateral boundary conditions needed to drive RegCM4 are derived from the CMIP5 models of HadGEM2-ES (RCP4.5 pathways), and the data set include temperature and precipitation.

0 2019-11-16

Future climate projection over Northwest China based on RegCM4.6 (2007-2099)

An effective assessment of future climate change, especially future precipitation forecasting, is an important basis for the rational development of adaptive strategies for Northwest China, where the ecological environment is fragile and encompasses arid and semiarid regions. Based on RegCM 4.6 model and HadGEM2-ES scenarios with four different representative concentration pathways (RCP 2.6, RCP 4.5, RCP6.0 and RCP 8.5), the climate projections of 0.25 degree in the future (2007-2099) at 3 hours, daily and yearly time scales over Northwest China are presented respectively. These data indicate that the near-surface temperature in Northwest China will continue to warm in the future under RCP 8.5 scenario. By the end of the 21st century, the temperature will become more significant. Over 6 °C, precipitation will continue to increase in the future, and will increase by 100 mm by the end of the 21st century; The number of extreme climate index summer days (SU) will continue to increase, indicating that high temperatures will be more frequent over Northwest China in future, meanwhile, the number of consecutive dry days (CDD) will decrease,

0 2019-11-06

The atmospheric forcing data in the Heihe River Basin (2000-2018)

Near surface atmospheric forcing data were produced by using Wether Research and Forecasting (WRF) model over the Heihe River Basin at hourly 0.05 * 0.05 DEG resolution, including the following variables: 2m temperature, surface pressure, water vapor mixing ratio, downward shortwave & upward longwave radiation, 10m wind field and the accumulated precipitation. The forcing data were validated by observational data collected by 15 daily Chinese Meteorological Bureau conventional automatic weather station (CMA), a few of Heihe River eco-hydrological process comprehensive remote sensing observation (WATER and HiWATER) site hourly observations were verified in different time scales, draws the following conclusion: 2m surface temperature, surface pressure and 2m relative humidity are more reliable, especially 2m surface temperature and surface pressure, the average errors are very small and the correlation coefficients are above 0.96; correlation between downward shortwave radiation and WATER site observation data is more than 0.9; The precipitation agreed well with observational data by being verified based on rain and snow precipitation two phases at yearly, monthly, daily time scales . the correlation coefficient between rainfall and the observation data at monthly and yearly time scales were up to 0.94 and 0.84; the correlation between snowfall and observation data at monthly scale reached 0.78, the spatial distribution of snowfall agreed well with the snow fractional coverage rate of MODIS remote sensing product. Verification of liquid and solid precipitation shows that WRF model can be used for downscaling analysis in complex and arid terrain of Heihe River Basin, and the simulated data can meet the requirements of watershed scale hydrological modeling and water resources balance. The data for 2000-2012 was provided in 2013. The data for 2013-2015 was updated in 2016. The data for 2016-2018 was updated in 2019.

0 2019-11-06

Data set of spatial and temporal distribution of water resources in Yarlung Zangbo River from 1998 to 2016

This data is a 5km monthly hydrological data set, including grid runoff and evaporation (if evaporation is less than 0, it means condensation; if runoff is less than 0, it means precipitation is less than evaporation). This data is a 5km monthly hydrological data set, including grid runoff and evaporation (if evaporation is less than 0, it means condensation; if runoff is less than 0, it means precipitation is less than evaporation).

0 2019-10-18

Dataset of high-resolution surface air exchange and low-level atmospheric structure of the Qinghai Tibet Plateau (August 2014)

Based on the WRF model, using ERA5 reanalysis data as the initial and boundary fields, the high-resolution low-level atmospheric structure and the earth atmosphere exchange data set of the Qinghai Tibet Plateau are preliminarily obtained by the method of dynamic downscaling. The time range of this data set is from August 1 to August 31, 2014, with a time resolution of 1 hour, a horizontal range of 25 °N-40 °N, 70oE-105oE, and a horizontal resolution of 0.05 °. The data format is NetCDF, and one file is output every hour. The file is named after the date. The lower atmospheric structure data includes temperature, relative humidity, water vapor mixing ratio, potential height, meridional wind and latitudinal wind meteorological elements, with 34 isobaric surfaces in the vertical direction; the surface air exchange data set includes the upward / downward short wave radiation, upward / downward long wave radiation, surface sensible heat and flux, 2m air temperature and water vapor mixing ratio, 10m wind, etc. The data set can provide data support for the study of weather process and climate environment in the Tibetan Plateau.

0 2019-10-18

Temperature and precipitation grid data of the Qinghai Tibet Plateau and its surrounding areas in 1998-2017Grid data of annual temperature and annual precipitation on the Tibetan Plateau and its surrounding areas during 1998-2017

Data description: This dataset includes the grid data of annual temperature and annual precipitation on the Tibetan Plateau from 1998 to 2017. It is the basic data for study of climate change and its impact on the ecological environment. Data source and processing: The meta data was aquired from the temperature and precipitation daily data of China's ground high-density stations (above 2,400 national meteorological stations) based on the latest compilation of the National Meteorological Information Center's basic data. After removing the missing stations, the software's thin plate spline method in ANUSPLIN was used to perform spatial interpolation, in order to generate grid data with spactial resolution of 1 km on the Tibetan Plateau . Data application: This data can be used to indentify the impact of climate change on the ecological environment.

0 2019-10-16

WATER: Dataset of CMA operational meteorological stations observations in the Heihe River Basin

The dataset of CMA operational meteorological stations observations in the Heihe river basin were provided by Gansu Meteorological Administration and Qinghai Meteorological Administration. It included: (1) Diurnal precipitation, sunshine, evaporation, the wind speed, the air temperature and air humidity (2, 8, 14 and 20 o'clock) in Mazongshan, Yumen touwnship, Dingxin, Jinta, Jiuquan, Gaotai, Linze, Sunan, Zhangye, Mingle, Shandan and Yongchang in Gansu province (2) the wind direction and speed, the temperature and the dew-point spread (8 and 20 o'clock; 850, 700, 600, 500, 400, 300, 250, 200, 150, 100 and 50hpa) in Jiuquan, Zhangye and Mingqin in Gansu province and Golmud, Doulan and Xining in Qinghai province (3) the surface temperature, the dew point, the air pressure, the voltage transformation (3 hours and 24 hours), the weather phenomena (the present and the past), variable temperatures, visibility, cloudage, the wind direction and speed, precipitation within six hours and unusual weather in Jiuquan, Sunan, Jinta, Dingxin, Mingle, Zhangye, Gaotai, Shandan, Linze, Yongchang and Mingqin in Gansu province and Tuole, Yeniugao, Qilian, Menyuan, Xining, Gangcha and Huangyuan in Qinhai province.

0 2019-09-15