Comprehensive observation data set of cloud precipitation process in Liupan Mountain (2021)

The data set is a sub data set of the comprehensive observation data set of cloud precipitation process, which is derived from the comprehensive investigation and test carried out in Liupanshan area during 2021. Liupanshan scientific research is carried out in Dawan station, Jingyuan station, Liupanshan station, Longde station, etc. Dawan station is mainly equipped with cfl-06 wind profile radar, ht101 cloud radar, mrr-2 micro rain radar, dsg5 raindrop spectrometer, three-dimensional anemometer, C12 laser cloud altimeter. Jingyuan station is mainly equipped with qfw-6000 microwave radiometer, hmb-kps cloud radar, dsg5 raindrop spectrometer Cl51 laser cloud altimeter. Liupanshan station is mainly equipped with ht101 cloud radar, mrr-2 micro rain radar, Ott laser raindrop spectrometer, cloud condensation nodule (CCN) counter, three-dimensional anemometer, FM120 droplet spectrometer and C12 laser cloud altimeter. Longde station is mainly equipped with rpg-hatpro-g4 microwave radiometer, cfl-06 wind profile radar, ht101 Cloud Radar, mrr-2 micro rain radar Ott laser raindrop spectrometer, C12 laser cloud altimeter. Meanwhile automatic weather station, iron tower (Shangpu), X-band all solid-state dual polarization Doppler Weather Radar (Pengyang County), gradient station and other observations were done. It can be used to study the impact of the eastward movement of the plateau system on the downstream, and to reveal the impact of the atmospheric boundary layer and free atmospheric exchange process on aerosols, clouds Fog and precipitation and their interaction.

0 2022-02-11

Comprehensive observation data set of cloud precipitation process in Sanjiang source (2021)

The data set is a sub data set of the comprehensive observation data set of cloud precipitation process, which is derived from the comprehensive investigation and test carried out in Sanjiangyuan area during 2021. The scientific research of Sanjiangyuan mainly focuses on Advanced Air King aircraft observation. The airborne observation system includes aerosol, cloud particle spectrometer and imager observation. The observation elements include precipitation particle concentration and image of IP probe, cloud particle concentration and image of CIP probe, cloud and aerosol particle data of CAS probe and Hotwire_ LWC probe liquid water data, CAPS Summary aerosol, cloud and precipitation comprehensive data, AIMMS probe conventional meteorological elements, PCASP -100 probe aerosol particle data. Ground observation includes raindrop spectrometer, microwave radiometer and X-band radar. Raindrop spectrometer mainly observes equivalent volume diameter and particle falling speed. Microwave radiometer mainly observes temperature, humidity, water vapor and liquid water. And X-band radar mainly observes intensity, velocity and spectral width. It can provide data support for the study of the impact of westerly monsoon synergy on the cloud precipitation process of Sanjiang source.

0 2022-02-10

Comprehensive observation data set of cloud precipitation process in Qilian Mountain (2020)

This data set is a sub data set of the comprehensive observation data set of cloud precipitation process, which is derived from the comprehensive investigation test carried out on the South and north slopes of Qilian Mountains during 2020. The air observation is mainly conducted by the king aircraft in the air. The ground investigation includes automatic weather station, raindrop spectrometer, microwave radiometer, Cloud Radar, sounding second data, etc. The observation elements of automatic weather station include air temperature, air pressure, humidity Wind direction, wind speed, precipitation. The observation elements of raindrop spectrometer include particle spectrum, precipitation intensity, etc. The observation elements of microwave radiometer are atmospheric temperature and humidity profiles. The observation elements of cloud Radar are mainly fixed-point vertical observation data. Meanwhile aerosol, rain, hail and soil samples are collected. It can provide data support for revealing the influence of westerly monsoon on cloud precipitation process and atmospheric water cycle in Qilian Mountains.

0 2021-12-31

WATER: Dataset of ground truth measurements for snow synchronizing with airborne microwave radiometers (K&Ka bands) mission in the Binggou watershed foci experimental area on Mar. 29, 2008

The dataset of ground truth measurements for snow was obtained, synchronizing with airborne microwave radiometers (K&Ka bands) mission in the Binggou watershed foci experimental area on Mar. 29, 2008. Those provide reliable ground data for retrieval of snow properties and parameters, especially snow depth and snow water equivalent study. Observation items include (1) snow density, snow complex permittivity, snow volumetric moisture and snow gravimetric moisture by the snowfork in BG-A; (2) snow parameters in BG-A (18 points), BG-B (20 points), BG-EF (20 points) and BG-I (20 points): snow depth by the ruler, the snow temperature (mean of two measurements) by the probe thermometer, snow grain size by the handheld microscope, snow density by the cutting ring for each snow layer, and the snow surface temperature and the snow-soil interface temperature by the handheld infrared thermometer. For each snow pit, the snowpack was divided into several layers with 10-cm intervals of snow depth. Two files including raw data and pre-processed data were archived.

0 2019-05-23

WATER: Dataset of ground-based microwave scatterometer and snow parameter observations in the Binggou watershed experimental area on Mar. 16, 2008

The dataset of ground-based microwave scatterometer and snow parameter observations was obtained in the Binggou watershed experimental area on Mar. 16, 2008. Observation items included: (1) Snow backscattering coefficient by the scatterometer (2) Snow parameters as the snow surface temperature by the probe thermometer, snow grain size by the handheld microscope, snow density by the snow shovel, the snow surface temperature and the snow-soil interface temperature by the handheld infrared thermometer in BG-I. (3) The snow spectrum by the portable ASD (Xinjiang Meteorological Administration) at the Dadongshu mountain pass; the major and minor axis and shape of the snow layer grain through the snow sieve. (4) Snow albedo by the total radiometer from 10:29 to 15:00 (5) Snow density, snow complex permittivity, snow volumetric moisture and snow gravimetric moisture by the Snowfork at the Dadongshu mountain pass Two subfolders including raw data and preprocessed data were archived.

0 2019-05-23