A tree ring-based winter temperature reconstruction for the southeastern Tibetan Plateau (1340-2007)
  • 2019-10-03
  • 0
  • 1

This data set is provided by the author of the paper: Huang, R., Zhu, H.F., Liang, E.Y., Liu, B., Shi, J.F., Zhang, R.B., Yuan, Y.J., & Grießinger, J. (2019). A tree ring-based winter temperature reconstruction for the southeastern Tibetan Plateau since 1340 CE. Climate Dynamics, 53(5-6), 3221-3233. In this paper, in order to understand the past few hundred years of winter temperature change history and its driving factors, the researcher of Key Laboratory of Alpine Ecology, Institute of Tibetan Plateau Research, Chinese Academy of Sciences and CAS Center for Excellence in Tibetan Plateau Earth Sciences. Prof. Eryuan Liang and his research team, reconstructed the minimum winter (November – February) temperature since 1340 A.D. on southeastern Tibetan Plateau based on the tree-ring samples taken from 2007-2016. The data set contains minimum winter temperature reconstruction data of Changdu on the southeastern TP during 1340-2007. See attachments for data details: A tree ring-based winter temperature reconstruction for the southeasternTibetan Plateau since 1340 CE.pdf

More
An integrated dataset of holocene climate change in the arid and semi-arid regions of Central-East Asia
  • 2019-09-15
  • 0
  • 1

In the mid-latitude region of Asia, the southeastern region is humid and affected by monsoon circulation (thus, it is referred to as the monsoon region), and the inland region is arid and controlled by the other circulation patterns (these areas include the cold and arid regions in the northern Tibetan Plateau, referred to as the westerly region). Based on the generalization of the climate change records published in recent years, the westerly region was humid in the mid-late Holocene, which was significantly different from the pattern of the Asian monsoon in the early-middle Holocene. In the past few millennia, the westerly region was arid during the Medieval Warm Period but relatively humid during the Little Ice Age. In contrast, the oxygen isotope records derived from a stalagmite in the Wanxiang Karst Cave showed that the monsoon precipitation was high in the Medieval Warm Period and low during the Little Ice Age. In the last century, especially in the last 50 years, the humidity of the arid regions in the northwest has increased, while the eastern areas of northwestern and northern China affected by the monsoon have become more arid. Moreover, in the northern and southern parts of the Tibetan Plateau, which are affected by the westerlies and the monsoon, respectively, the precipitation changes on the interdecadal and century scales have also shown an inverse phase. Based on these findings, we propose that the control zone of the westerly belt in central Asia has different humidity (precipitation) variation patterns than the monsoon region on every time scale (from millennial to interdecadal) in the modern interglacial period. The integrated research project on Holocene climate change in the arid and semi-arid regions of western China was a major research component of the project Environmental and Ecological Science for West China, which was funded by the National Natural Science Foundation of China. The leading executive of the project was Professor Fahu Chen from Lanzhou University. The project ran from January 2006 to December 2009. The data collected by the project include the following: 1. The integrate humidity data over the Holocene in the arid regions of Central-East Asia and 12 lakes (11000-0 cal yr BP): including Lake Van, Aral Sea, Issyk-Kul, Ulunguhai Lake, Bosten Lake, Barkol Lake, Bayan Nuur, Telmen Lake, Hovsgol Nuur, Juyan Lake, Gun Nuur and Hulun Nuur. 2. The integrated humidity data over the past millennium in the arid regions of Central-East Asia and at five research sites (1000-2000): including Aral Sea, Guliya, Bosten Lake, Sugan Lake, and the Badain Juran desert. Data format: excel table.

More
Oxygen isotope, dust, anion and accumulation data from the Guliya ice core (1992)
  • 2019-09-15
  • 0
  • 1

This data set contains the oxygen isotope, dust, anion and accumulation data obtained from the deep ice core drilled in 1992 in the Guliya ice cap, which is located in the west Kunlun Mountains on the Tibetan Plateau. The length of the ice core was 308.6 m. The ice core was cut into samples, 12628 of which were used to measure the oxygen isotope values, 12480 of which were used to measure the dust concentrations, and 9681 of which were used to measure the anion concentrations. Data Resource: National Centers for Environmental Information(http://www.ncdc.noaa.gov/data-access/paleoclimatology-data/datasets/ice-core). Processing Method: Average. The data set contains 4 tables, namely: oxygen isotope, dust and anion data from different depths in the Guliya ice core, 10-year mean data of oxygen isotopes, dust, anions and net accumulation in the Guliya ice core, 400-year mean data of oxygen isotopes, dust and anions in the Guliya ice core, and chlorine-36 data from different depths. Table 1: Data on oxygen isotopes, dust and anion concentrations at different depths in the Guliya ice core. a. Name explanation Field 1: Depth Field 2: Oxygen isotope value Field 3: Dust concentration (diameter 0.63 to 20 µm) Field 4: Cl- Field 5: SO42- Field 6: NO3- b. Dimensions (unit of measure) Field 1: m Field 2: ‰ Field 3: particles/mL Field 4: ppb Field 5: ppb Field 6: ppb Table 2: 10-year mean oxygen isotope, dust, anion and net accumulation data for the Guliya ice core (0-1989) a. Name explanation Field 1: Start time Field 2: End time Field 3: Oxygen isotope value Field 4: Dust concentration (diameter 0.63 -20 µm) Field 5: Cl- Field 6: SO42- Field 7: NO3- Field 8: Net accumulation b. Dimensions (unit of measure) Field 1: Dimensionless Field 2: Dimensionless Field 3: ‰ Field 4: particles/mL Field 5: ppb Field 6: ppb Field 7: ppb Field 8: cm/year Table 3: 400-year mean oxygen isotope, dust and anion data for the Guliya ice core. a. Name explanation Field 1: Time Field 2: Oxygen isotope Field 3: Dust concentration (diameter 0.63-20 µm) Field 4: Cl- Field 5: SO42- Field 6: NO3- b. Dimensions (unit of measure) Field 1: Millennium Field 2: ‰ Field 3: particles/mL Field 4: ppb Field 5: ppb Field 6: ppb Table 4: Chlorine-36 data at different depths a. Name explanation Field 1: Depth Field 2: 36Cl Field 3: 36Cl error Field 4: Year b. Dimensions (unit of measure) Field 1: m Field 2: 104 atoms g-1 Field 3: % Field 4: Millennium

More
The dataset of ophiolite cumulate chronology and isotope in Nagqu, Tibet (2011-2012)
  • 2019-09-15
  • 0
  • 1

Data source description: The data are generated by arranging the literature. Test method: zircon U-Pb isotope LA-(MC)-ICPMS test; Re-Os isotope dilution method TIMS test. Data processing method: The data are automatically acquired by the analytical instrument, and the dating data are calculated using ISOPLOT software. The accuracy of the raw data: The accuracy of the zircon age test is shown in the error analysis value in the table; the accuracy of the Re-Os isotope analysis is shown in the error analysis value in the table. Data generating process: The first author personally analyzes and obtains the data, strictly in accordance with the experimental specifications Applications: Geology Data accuracy after processing: The accuracy of the processed data table is basically consistent with the analysis accuracy. The data contains 2 tables: (1) Zircon U-Pb isotope age analysis results table and (2) Whole rock and spinel Re-Os isotope 7 U-Pb zircon age data and 5 Re-Os isotope data. Data Types: Table 1: Zircon U-Pb age Data type: digital Table 2: Whole rock and spinel Re-Os isotopes Data type: digital Dimensions (unit of measure): "Zircon U-Pb age" dimension: Ma, "Re-Os isotope" dimension: ratio

More
Oxygen Isotope, dust, anion and accumulation data from the Dunde Ice Core (1987)
  • 2019-09-15
  • 0
  • 1

This data set contains data from the three ice cores drilled from the Dunde ice cap in the northern Tibetan Plateau in 1987. Core D-1 has a length of 139.8 m and is divided into 3585 samples for isotope analysis. Core D-3 has a length of 138.4 m, and the upper 56 m was cut into several samples on site and stored in bottles after melting, while the remaining length was frozen and preserved. The data set contains three data tables, namely, 10-year mean oxygen isotope data for the Dunde ice core (520-1987 A.D.), 5-year mean water equivalent accumulation data for Dunde ice core and 10-year mean dust data for the Dunde ice core. Data source: National Centers for Environmental Information (http://www.ncdc.noaa.gov/data-access/paleoclimatology-data/datasets/ice-core). Processing method: Average. Table 1: 10-year mean oxygen isotope data for core D-3 (520 - 1987 A.D.) a. Name explanation Field 1: Start time Field 2: End time Field 3: Oxygen isotope value b. Dimensions (units of measure) Field 1: Dimensionless Field 2: Dimensionless Field 3: ‰ Data Table 2: 5-year mean water equivalent accumulation data for core D-1 (1606-1984) a. Name explanation Field 1: Start time Field 2: End time Field 3: Accumulation b. Dimensions (units of measure) Field 1: Dimensionless Field 2: Dimensionless Field 3: m Data Sheet 3: 10-year mean dust data for core D-3 (520 - 1987 A.D.) a. Name explanation Field 1: Start time Field 2: End time Field 3: Dust (diameter 0.63-16 µm) Field 4: Dust (diameter 2.00-60 µm) Field 5: Cl- Field 6: SO42- Field 7: NO3- b. Dimensions (units of measure) Field 1: Dimensionless Field 2: Dimensionless Field 3: Particles/mL Field 4: Particles/mL Field 5: ppb Field 6: ppb Field 7: ppb

More
The data of zircon U-Pb ages of granites in south Qiangtang of the Tibetan Plateau (2014)
  • 2019-09-15
  • 0
  • 1

This data set collected zircon U-Pb isotope age data of the granites in the southern Qiangtang terrane of the Tibetan Plateau from articles published before October 2014. The data were analyzed by Laser Ablation-Inductively Coupled Plasma-Mass Spectrometry (LA-ICPMS), Sensitive High-Resolution Ion Microprobe (SHRIMP), and Isotope Dilution Thermal Ionization Mass Spectrometry (ID TIMS). The data were obtained according to laboratory standards, and the data quality met laboratory requirements. The data contents are as follows: Region Locality Lithology Sample No. Dating method Age (Ma) References

More
Database of lake diatom - salinity of lake water conversion relationship on the Tibetan Plateau (1723-2001)
  • 2019-09-14
  • 0
  • 1

This data set contains Chen Co fossil diatoms, Chen Co conductivity reconstruction, Nam Co fossil diatoms, and Nam Co conductivity reconstruction. It can be used to study the characteristics of the living diatom species and for quantitative reconstruction of the paleoenvironments of the lakes of the Tibetan Plateau. The diatom data are obtained on the basis of the sample identification statistics, the water environment data are measured by the instrument, and the reconstructed conductivity is calculated from the diatom-salinity conversion function. This data set is obtained from laboratory measurements. The data are obtained immediately after the completion of the instrument or experiment. The samples and data are collected in strict accordance with relevant operating procedures at all stages. There are 6 subtables in this dataset: Subtable 1 is for a lake environment and has 18 fields, which are the lake name, number, lake number, latitude, longitude, water depth, altitude and water environment indicators; Subtable 2 is for the diatoms in surface sediments and has 4 fields, which are the lake serial number, the diatom abbreviation, the diatom name and its content; Subtable 3 is for the Chen Co diatoms and has 6 fields, which are sample number, analysis number and depth, diatom abbreviation, diatom name and its content; Subtable 4 is for the Chen Co conductivity reconstruction and has 3 fields, which are the depth, age, and conductivity of diatom reconstruction; Subtable 5 is for Nam Co fossil diatoms and has 5 fields. The first two fields are depth and age, and the other fields are the contents of diatoms of different species; and Subtable 6 is for the Nam Co conductivity reconstruction and has 3 fields, which are the depth, age, and conductivity of the diatom reconstruction. The dimension of diatom content in each subtable is the percentage of percent. The units of sample depth, water depth, age, longitude, latitude, altitude, ion content and conductivity are cm, m, AD, ° east longitude, ° north latitude, m, mg/L, and μS/cm, respectively. The diatom samples are collected from approximately 90 lakes on the Tibetan Plateau within a longitude range of 84.528 -102.360 °E and a latitude range of 28.148-38.897 °N; altitude: 2797-5180 m.

More
Time series dataset of the long-term dry-wet index in Western China (AD1500-BP2000)
  • 2019-09-14
  • 0
  • 1

Original information on the long-term dry-wet index (1500-2000) in western China is obtained by integrating data on dry-wet/drought-flood conditions and precipitation amounts in the western region published over more than a decade. The integrated data sets include tree rings, ice cores, lake sediments, historical materials, etc., and there are more than 50 such data sets. In addition to widely collecting representative data sets on dry-wet changes in the western region, this study also clarifies the main characteristics of the dry-wet changes and climate zones in the western region, and the long-term dry-wet index sequence was generated by extracting representative data from different zones. The data-based dry-wet index sequence has a 10-year temporal resolution for five major characteristic climate zones in the western region over nearly four hundred years and a high resolution (annual resolution) for three regions over the past five hundred years. The five major characteristic climate zones in the western region with a 10-year dry-wet index resolution over the last four hundred years are the arid regions, plateau bodies, northern Xinjiang, Hetao region, and northeastern plateau, and the three regions with a annual resolution over the last five hundred years are the northeastern plateau, Hetao region, and northern Xinjiang. For a detailed description of the data, please refer to the data file named Introduction of Dry-Wet Index Sequence Data for West China.doc.

More
Sequence database of the lake core sporopollen spectrum and temperature/precipitation reconstruction of Yamdrog Yumtso, southern Tibetan Plateau (0-20kaBP)
  • 2019-09-14
  • 0
  • 1

This dataset contains data on the lake core sporopollen spectrum and temperature/precipitation reconstruction sequence of Yamdrog Yumtso Lake in the southern Tibetan Plateau. It is used to study the environmental changes in the Yamdrog Yumtso region by 20 ka. It is obtained by the sporopollen analysis method. This data set is obtained by laboratory measurement and calculation. The samples and data are collected and identified in strict accordance with relevant operating procedures at all stages. There are three subtables in this dataset. The first two tables comprise the following analysis data of TC1 pore sporopollen samples. Field 1: Sample Number Field 2: Sample Depth Unit: cm Field 3: Sample Age Unit: aBP Field 4: Total sporopollen concentration Units: granules/gram Field 5: Total Pollen Granules Unit: Number of grains Field 6: Total number of indicative pollen Unit: Number of grains Field 7: Identification of indicative pollen number Unit: Number of grains Field 8: Sample Weight Unit: Grams Field 9: Concentration Coefficient Units: granules / gram Field 1: Sample Number Field 2: Plant species Field 3: Pollen content Unit: % The third subtable is the reconstructed temperature precipitation and has 6 fields. Field 1: Sample Code Field 2: Sample Name Field 3: Depth Unit: cm Field 4: Age Unit: aBP Field 5: Average annual temperature Unit: 0.1 °C Field 6: Annual precipitation Unit: 0.1 mm The rock core was collected from the Yamdrog Yumtso Basin in the southern part of the Tibetan Plateau. The approximate sampling location is 90°27′E,28°56′N, and the altitude there is 4425 m.

More
Holocene sporopollen dataset on the northern slope of the Tianshan Mountains
  • 2019-09-13
  • 0
  • 1

The research area is located in the middle section o the northern slope of the Tianshan Mountains. The research area extends from Wusu in the Tacheng District of Xinjiang in the west to Mulei County in Changji Prefecture in the east. It is approximately 500 km long from east to west. The vertical vegetation gradient on the northern slope of the Tianshan Mountains can be divided into six different belts: alpine cushion vegetation belt (>3400 m), sub-alpine meadow belt (3400~2700 m), mid-mountain forest belt (2700~1720 m), forest steppe belt (1720~1300 m), semi-desert belt (1300~700 m) and typical desert belt (<700 m). Based on the characteristics of the vertical vegetation belts on the northern slope of the Tianshan Mountains, five sedimentary sections with different elevations, different vegetation belts and different sedimentary ages were selected for analysis. Five mid-late Holocene sections were measured to calculate the composite dissimilarity index of sporopollen, and the index was used to explain the sporopollen diversity. The index was then combined with integrated multiple analysis data, such as particle size, magnetic susceptibility, and ignition loss, and the changes in biodiversity and environmental characteristics since the mid-late Holocene in the area were assessed. The data include the following: 1. Sporopollen grain number data for the Daxigou section (8-110 cm, a total of 52 layers were analysed for sporopollen grain number, 3640±60 a BP to 890±60 a BP) 2. Sporopollen grain number data for the Xiaoxigou section (0-90 cm, a total of 38 layers were analysed for sporopollen grain number, 3240±60 a BP) 3. Sporopollen grain number data for the Huashuwozi section (0-106 cm, a total of 52 layers were analysed for sporopollen grain number, 2170±185 a BP to 450±155 a BP) 4. Sporopollen grain number data for the Sichanghu section (10-84 cm, a total of 19 layers were analysed for sporopollen grain number, 1000±50 a BP to 665±65 a BP) 5. Sporopollen grain number data for the Dongdaohaizi section (0-190 cm, a total of 64 layers were analysed for sporopollen grain number, 4500±310 a BP to 305±130 a BP) For detailed descriptions of the data, please refer to the following study: "Palaeo-biodiversity at the Northern Piedmont of Tianshan Mountains in Xinjiang During the Middle to Late Holocene"

More