Map of snow, ice, and frozen ground in China (1988)

The map is "1:4 Million Ice, Snow and Frozen Soil Map of China" compiled by Mr. Shi Yafeng and Mr. Meadson. The working map compiled by the map is "Chinese Pinyin Edition of the People's Republic of China", which retains the water system and mountain annotation of the map and adds some mountain annotation. The compilation of frozen soil map is based on the actual data of frozen soil survey and exploration, interpretation of remote sensing data, temperature conditions and topographic characteristics that affect the formation and distribution of frozen soil. The height of glacier snow line is expressed by isolines. Seasonal snow accumulation and seasonal icing are based on the data of 1600 meteorological observation stations and the results of many years of investigation in China. They are expressed by isoline notation and symbols. The selection of cold (periglacial) phenomena is a representative and schematic representation observed on the spot. The boundary line between permafrost and non-permafrost is mapped by calculation based on the field data, and its comprehensive degree is relatively high (Tö pfer, 1982) "China Ice and Snow Frozen Soil Map" reflects the scale, types and characteristics of distribution of glaciers, snow cover, frozen soil and periglacial, as well as its value in scientific research and the prospect of utilization and prevention in production practice. It shows our achievements in glacier and frozen soil research in the past 30 years.

0 2020-04-02

Glacier inventory of the Pengqu Basin, Himalayas, China

This glacier inventory is jointly supported by the International Centre for Integrated Mountain Development (ICIMOD) and United Nationenvironment Programme / Regional Resourc Centre, Asia and The Pacific (UNEP / RRC-AP), Cold and Arid Region Environmental and Engineering Research Institute(CAREERI). 1. The glacier inventory uses landsat (TM, ETM) and Aster remote sensing data to reflect the current state of glaciers in the Himalayas in 2004. 2. Glacier inventory coverage: Pumqu (Arun), Rongxer (Tama Koshi), Poiqu (Bhote-Sun Koshi), Jilongcangbu (Trishuli), Zangbuqin (Budhigandaki), Majiacangbu (Humla Karnali), etc. watersheds in Himalayan. 3. The glacier inventory includes: glacier location, glacier code, glacier name, glacier area, glacier length, glacier thickness, ice reserves, glacier type, glacier orientation, etc. 4. Data projection information: Projection: Transverse_Mercator False_Easting: 500000.000000 False_Northing: 0.000000 Central_Meridian: 87.000000 Scale_Factor: 0.999600 Latitude_Of_Origin: 0.000000 Linear Unit: Meter (1.000000) Geographic Coordinate System: GCS_WGS_1984 Angular Unit: Degree (0.017453292519943299) Prime Meridian: Greenwich (0.000000000000000000) Datum: D_WGS_1984 Spheroid: WGS_1984 Semimajor Axis: 6378137.000000000000000000 Semiminor Axis: 6356752.314245179300000000 Inverse Flattening: 298.257223563000030000 For detailed data description, please refer to the document and report.

0 2020-04-01

1:4 million map of the Glaciers, Frozen Ground and Deserts in China (2006)

The compilation basis of frozen soil map includes: (1) frozen soil field survey, exploration and measurement data; (2) aerial photo and satellite image interpretation; (3) topo300 1km resolution ground elevation data; (4) temperature and ground temperature data. Among them, the distribution of permafrost in the Qinghai Tibet Plateau adopts the research results of nanzhuo Tong et al. (2002). Using the measured annual average ground temperature data of 76 boreholes along the Qinghai Tibet highway, regression statistical analysis is carried out to obtain the relationship between the annual average ground temperature and latitude, elevation, and based on this relationship, combined with the gtopo30 elevation data (developed under the leadership of the center for earth resources observation and science and technology, USGS) Global 1 km DEM data) to simulate the annual mean ground temperature distribution over the whole Tibetan Plateau. Taking the annual average ground temperature of 0.5 ℃ as the boundary between permafrost and seasonal permafrost, the boundary between discontinuous Permafrost on the plateau and island Permafrost on the plateau is delimited by referring to the map of ice and snow permafrost in China (1:4 million) (Shi Yafeng et al., 1988); in addition, the division map of Permafrost on the big and small Xing'an Mountains in the Northeast (Guo Dongxin et al., 1981), the distribution map of permafrost and underground ice around the Arctic (b According to rown et al. 1997) and the latest field survey data, the Permafrost Boundary in Northeast China has been revised; the Permafrost Boundary in Northwest mountains mostly uses the boundary defined in the map of ice and snow permafrost in China (1:4 million) (Shi Yafeng et al., 1988). According to the data, the area of permafrost in China is about 1.75 × 106km2, accounting for about 18.25% of China's territory. Among them, alpine permafrost is 0.29 × 106km2, accounting for about 3.03% of China's territory. For more information, please refer to the specification of "1:4 million map of glacial and frozen deserts in China" (Institute of environment and Engineering in cold and dry areas, Chinese Academy of Sciences, 2006)

0 2020-04-01

Exchange data of research project on glacier change trend and its impact on water resources change in Tarim River Basin (2003-2005)

The glacial change trend in the Tarim River Basin and its impact on water resources change belong to the National Natural Science Foundation of China's Western Environment and Ecological Science major research project. The time is 2003.1-2005.12. The project submitted data: Kochikarbachi Glacier Observation Data (excel): Including precipitation, wind direction, wind speed and temperature data 1.3300a_climate (2003.6.29-2004.6.22): 4 hours data during the day, including field date, time, wind speed, wind up, temperature. 2.4200b_climate (2004.1.29-2004.5.12): 6:00, 8:00, 9:00, 10:00, 12:00, 14:00, 16:00, 18:00, 20:00, 22: 00, 23:00 observation data, including field date, time, wind speed, wind up, temperature. 3.3700_Precipitation: 13 days daily precipitation from 2003.7 to 2005.9 4.4200_Precipitation: 18-day daily precipitation between 2003.7 and 2006. 6

0 2020-04-01

The Basic datasets of Urumqi river basin in Chinese Cryospheric Information System

Chinese Cryospheric Information System is a comprehensive information system for the management and analysis of Chinese cryospheric data. The establishment of Chinese Cryospheric Information System is to meet the needs of earth system science, and provide parameters and verification data for the development of response and feedback models of permafrost, glacier and snow cover to global changes under GIS framework. On the other hand, the system collates and rescues valuable cryospheric data to provide a scientific, efficient and safe management and analysis tool. Chinese Cryospheric Information System contains three basic databases of different research regions. The basic database of Urumqi river basin is one of three basic databases, which covers the Urumqi river basin in tianshan mountain, east longitude 86-89 °, and north latitude 42-45 °, mainly containing the following data: 1. Cryospheric data.Include: Distribution of glacier no. 1 and glacier no. 2; 2. Natural environment and resources.Include: Terrain digital elevation: elevation, slope, slope direction; Hydrology: current situation of water resource utilization;Surface water; Surface characteristics: vegetation type;Soil type;Land resource evaluation map;Land use status map; 3. Social and economic resources: a change map of human action; Please refer to the documents (in Chinese): "Chinese Cryospheric Information System design. Doc" and "Chinese Cryospheric Information System data dictionary. Doc".

0 2020-03-30

Basic datasets of the Tibetan Plateau in Chinese Cryospheric Information System

Chinese Cryospheric Information System is a comprehensive information system for the management and analysis of Chinese Cryospheric data. The establishment of Chinese Cryospheric Information System is to meet the needs of earth system science, to provide parameters and validation data for the development of response and feedback model of frozen soil, glacier and snow cover to global change under GIS framework; on the other hand, it is to systemically sort out and rescue valuable cryospheric data, to provide a scientific, efficient and safe management and division for it Analysis tools. The basic datasets of the Tibet Plateau mainly takes the Tibetan Plateau as the research region, ranging from longitude 70 -- 105 ° east and latitude 20 -- 40 ° north, containing the following types of data: 1. Cryosphere data. Includes: Permafrost type (Frozengd), (Fromap); Snow depth distribution (Snowdpt) Quatgla (Quatgla) 2. Natural environment and resources. Includes: Terrain: elevation, elevation zoning, slope, slope direction (DEM); Hydrology: surface water (Stram_line), (Lake); Basic geology: Quatgeo, Hydrogeo; Surface properties: Vegetat; 4. Climate data: temperature, surface temperature, and precipitation. 3. Socio-economic resources (Stations) : distribution of meteorological Stations on the Tibetan Plateau and it surrounding areas. 4. Response model of plateau permafrost to global change (named "Fgmodel"): permafrost distribution data in 2009, 2049 and 2099 were projected. Please refer to the following documents (in Chinese): "Design of Chinese Cryospheric Information System.doc", "Datasheet of Chinese Cryospheric Information System.DOC", "Database of the Tibetan Plateau.DOC" and "Database of the Tibetan Plateau 2.DOC".

0 2020-03-30

Tibetan Plateau glacier data - TPG2017 (v1.0)

Based on the multispectral remote sensing data of 210 Landsat 8 oli satellites, corrected and inlaid as false color composite image (RGB: 654), the method of artificial visual interpretation is adopted, and the result of band ratio method is referred, combined with SRTM DEM v4.1 data and Google data The images of earth and hj1a / 1b satellites in different seasons of the same year, excluding the influence of mountain shadow and seasonal snow, referring to the first and second glacial cataloguing data in China, excluding the steep cliffs and exposed bedrock in non glacial areas, comprehensively extracting the thematic vector data of net glaciers, excluding the surface moraine coverage area with unclear glacier end position, and the accuracy of glacial boundary digitization is half Pixel (15m). Through comparative analysis, it can be seen that the mountain glacier data extracted based on multi data sources, reference to multi method results and integration of expert experience and knowledge is more accurate.

0 2020-03-14

Glacier forefront snowmelt water temperature and near-surface temperature observations of hulugou watershed(July-September 2012)

From July 21 to September 2, 2012, the observation data of snowmelt water temperature and near surface temperature in hulugou small watershed were observed by hobo automatic temperature recorder, with the observation frequency of once / 15 minutes, and the near surface temperature recorder was 20cm away from the surface. The observation point 01 is an ice lake, which is formed by the permanent snow supply of Hunan slope. The lake is approximately triangular, and the long side trend is parallel to the slope foot, with the coordinates of 99 ° 53 ′ 11 ″ E and 38 ° 13 ′ 6 ″ n. The observation period is from July 21, 2012 to September 2, 2012. No.02 observation point is located under the ice lake, the source of the East tributary of hulugou, the foot of permanent snow slope and the lower edge of snow melting. The coordinates are 99 ° 53 ′ 12 ″ e, 38 ° 13 ′ 6 ″ n. The observation period is from July 21, 2012 to September 2, 2012. The distance between the two points is relatively close, and the near surface temperature is the uniform temperature, which is the near surface temperature of point 01.

0 2020-03-11

Glacier inventory dataset of Himachal Pradesh, India

This glacier inventory is jointly supported by the International Centre for Integrated Mountain Development (ICIMOD) and United Nationenvironment Programme / Regional Resourc Centre, Asia and The Pacific (UNEP / RRC-AP), Cold and Arid Region Environmental and Engineering Research Institute(CAREERI). 1. The glacier inventory uses remote sensing data such as LANDSAT 4/5 (MSS, TM) SPOT (XS), IRS-1C / 1D (LISS-III), etc. to reflects the current state of glaciers in the region in 2004. 2. Glacier inventory coverage: Yamuna basin, Ravi basin, Chenab basin, Satluj River Basin, etc. 3. The glacier inventory includes: glacier location, glacier code, glacier name, glacier area, glacier length, glacier thickness, ice reserves, glacier type, glacier orientation, etc. 4. Data projection information: Projection: Albers Equal Area Conic Ellipsoid: WGS 84 Datum: WGS 1984 False easting: 0.0000000 False northing: 0.0000000 Central meridian: 82° 30’E Central parallel: 0° 0’ N Latitude of first parallel: 20° N Latitude of second parallel: 35° N For detailed data description, please refer to the document and report.

0 2020-03-05

None

0 2020-02-15