Dataset of town boundary in Sanjiangyuan region National Park (2015)

This dataset is the spatial distribution map of the marshes in the source area of the Yellow River near the Zaling Lake-Eling Lake, covering an area of about 21,000 square kilometers. The data set is classified by the Landsat 8 image through an expert decision tree and corrected by manual visual interpretation. The spatial resolution of the image is 30m, using the WGS 1984 UTM projected coordinate system, and the data format is grid format. The image is divided into five types of land, the land type 1 is “water body”, the land type 2 is “high-cover vegetation”, the land type 3 is “naked land”, and the land type 4 is “low-cover vegetation”, and the land type 5 is For "marsh", low-coverage vegetation and high-coverage vegetation are distinguished by vegetation coverage. The threshold is 0.1 to 0.4 for low-cover vegetation and 0.4 to 1 for high-cover vegetation.

0 2020-05-29

Dataset of ZY-3 02 satellite images (2017)

The data set is remote sensing image of Resource 3 No. 02 (ZY3-02). ZY3-02 was successfully launched from Taiyuan Satellite Launch Center at 11:17 on May 30, 2016 by Long March 4 B carrier rocket. China-made satellite imagery will be further strengthened in the areas of land surveying and mapping, resource survey and monitoring, disaster prevention and mitigation, agriculture, forestry and water conservancy, ecological environment, urban planning and construction, transportation and other fields. List of files: ZY302_PMS_E98.8_N37.4_201707_L1A0000156704 ZY302_PMS_E100.4_N37.0_20171127_L1A0000217243 ZY302_TMS_E99.5_N37.0_20170717_L1A0000160059 ZY302_TMS_E100.3_N36.6_20171127_L1A0000217279 ZY302_TMS_E100.4_N37.0_20170529_L1A0000139947 Folder Naming Rules: Satellite Name Sensor Name Central Longitude Central Latitude Acquisition Time L1****

0 2020-05-29

Dataset of growing season average NDVI changing trends in Three River Source National Park (2000-2018)

Based on the average NDVI (spatial resolution 250m) of MODIS during the growing season from 2000 to 2018, the trend of NDVI was calculated by using Mann-Kendall trend detection method. Three parks of Three River Source National Park are calculated (CJYQ: Yangtze River Park; HHYYQ: Yellow River Park; LCJYQ: Lancang River Park). CJYQ_NDVI_trend_2000_2018_ok.tif: Changjiang Source Park NDVI trend. CJYQ_NDVI_trend_2000_2018_ok_significant.tif: Changjiang Source Park NDVI change trend, excluding the area that is not significant (p > 0.05). CJYYQ_gs_avg_NDVI_2000.tif: The average NDVI of the Yangtze River Source Park in 2000 growing season. Unit NDVI changes every year.

0 2020-05-29

The dataset of community statistics of each county in Three-River-Source National Park (2017)

This data set contains statistical tables on the community situation of each county in Three-River-Source National Park. The specific contents include: Table 1 includes: number of administrative villages, number of natural villages, number of households, population, number of rural labor force, total value of primary and secondary industries, net income per capita, and number of livestock. Table 2 includes: the ethnic composition of the population (population of each ethnic group), education-related statistics (number of primary and secondary schools and number of students), health-related statistics (number of hospitals, health rooms and medical personnel), and statistics on the education level of the population (number of people with different education levels); Table 3 includes: the grassland (total grassland area, usable grassland area, moderately degraded area and grassland vegetation coverage), woodland (total area, arbor forest area, shrub forest area and sparse forest area), water area (total area, river area, lake area, glacier area, snowy mountain area and wetland area). A total of four counties were designed: Maduo, Qumalai, Zaduo and Zhiduo. This data comes from statistics of government departments.

0 2020-05-29

Dataset of plant distribution investigation in Three-River-Source National Park (2008-2017)

This data set is the plant collection and distribution site information of Three-River-Source National Park investigated by Northwest Plateau Biology Institute of Chinese Academy of Sciences. The data set covers the period from 2008 to 2017, and the survey covers theThree-River-Source National Park. The survey contents include information such as collection date, number, family, genus, species, survey date, collection place, collector, longitude, latitude, altitude, habitat, appraiser, etc. Three parks of the national park were investigated respectively. 88 species of vegetation belonging to 56 genera and 24 families were investigated in the Yangtze River Source Park, with 116 records in total. Vegetation of 110 species in 64 genera and 26 families was investigated in the Yellow River Source Park, with 159 records in total. The vegetation of 30 species in 22 genera and 12 families was investigated in Lancang River Source Park, with a total of 33 records.

0 2020-03-13

Dataset of GF-2 satellite images (2017)

Gf-2 satellite is the first civil optical remote sensing satellite independently developed by China with a spatial resolution better than 1 meter. It is equipped with two high-resolution 1-meter panchromatic and 4-meter multi-spectral cameras, and the spatial resolution of the sub-satellite can reach 0.8 meters. This data set is the remote sensing image data of 6 jing gaofen-2 satellite in 2017.The folder list is: GF2_PMS1_E100.5_N37.2_20171013_L1A0002678101 GF2_PMS1_E100.5_N37.4_20171013_L1A0002678097 GF2_PMS1_E100.6_N37.6_20171013_L1A0002678096 GF2_PMS2_E100.3_N37.4_20170810_L1A0002534662 File naming rules: satellite name _ sensor name _ center longitude _ center latitude _ imaging time _L****

0 2020-03-09

Dataset of GF-1 satellite images (2017-2018)

This data set is the remote sensing data of gaofan-1 satellite, including the data of two scenes of PMS1 camera on 2017-8-13 and 2017-10-5, one scene of PMS2 camera on 2017-5-27, and one scene of WFV2 and WFV3 camera on September 23, 2018.File list: GF1_PMS1_E99.1_N37.2_20170813_L1A0002539236 GF1_PMS1_E101.2_N36.4_20171005_L1A0002653985 GF1_PMS2_E100.3_N37.7_20170527_L1A0002384098 GF1_WFV2_E98.4_N37.6_20180927_L1A0003481737 GF1_WFV3_E100.4_N37.3_20180927_L1A0003481706

0 2020-03-09

Long-term surface soil freeze-thaw states dataset of the Three-River_Source National Park using the dual-index algorithm (1979-2015)

This data set uses SMMR (1979-1987), SSM / I (1987-2009) and ssmis (2009-2015) daily brightness temperature data, which is generated by double index (TB V, SG) freeze-thaw discrimination algorithm. The classification results include four types: frozen surface, melted surface, desert and water body. The data covers the source area of three rivers, with a spatial resolution of 25.067525 km. It is stored in geotif format in the form of ease grid projection. Pixel values represent the state of freezing and thawing: 1 for freezing, 2 for thawing, 3 for deserts, 4 for water bodies. Because all TIF files in the dataset describe the scope of Sanjiangyuan National Park, the row and column number information of these files is unchanged, and the excerpt is as follows (where the unit of cellsize is m): ncols 52 nrows 28 cellsize 25067.525 nodata_value 0

0 2020-01-09

Snow depth product for Sanjiangyuan from 1980 to 2018

This dataset was derived from long-term daily snow depth in China based on the boundary of the three-river-source area. The snow depth ranges from 0 to 100 cm, and the temporal coverage is from January 1 1980 to December 31 2018. The spatial and temporal resolutions are 0.25o and daily, respectively. Snow depth was produced from satellite passive microwave remote sensing data which came from three different sensors that are SMMR, SSM/I and SSMI/S. Considering the systematic bias among these sensors, the inter-sensor calibrations were performed to obtain temporal consistent passive microwave remote sensing data. And the long-term daily snow depth in China were produced from this consistent data based on the spectral gradient method.

0 2019-12-20

MODIS daily cloud-free snow cover area product for Sanjiangyuan from 2000 to 2018

The dataset was produced based on MODIS data. Parameters and algorithm were revised to be suitable for the land cover type in the Three-River-Source Regions. By using the Markov de-cloud algorithm, SSM/I snow water equivalent data was fused to the result. Finally, high accuracy daily de-cloud snow cover data was produced. The data value is 0(no snow) or 1(snow). The spatial resolution is 500m, the time period is from 2000-2-24 to 2018-12-31. Data format is geotiff, Arcmap or python+GDAL were recommended to open and process the data.

0 2019-12-17