This dataset includes data recorded by the Cold and Arid Research Network of Lanzhou university obtained from an observation system of Meteorological elements gradient of Sidalong Station from January 1 to April 12, 2019. The site (38.430°E, 99.931°N) was located on a forest in the Kangle Sunan, which is near Zhangye city, Gansu Province. The elevation is 3059 m. The installation heights and orientations of different sensors and measured quantities were as follows: air temperature and humidity profile (0.5, 3, 13, 24, and 48 m), wind speed and direction profile (windsonic; 0.5, 3, 13, 24, and 48 m), air pressure (1.5 m), rain gauge (24 m), infrared temperature sensors (4 m and 24m, vertically downward), photosynthetically active radiation (4 m and 24m), soil heat flux (-0.05 m and -0.1m), soil temperature/ moisture/ electrical conductivity profile -0.05, -0.1m, -0.2m, -0.4m and -0.6mr), four-component radiometer (24 m, towards south), sunshine duration sensor(24 m, towards south). The observations included the following: air temperature and humidity (Ta_0.5 m, Ta_3 m, Ta_13 m, Ta_24 m, and Ta_48 m; RH_0.5 m, RH_3 m, RH_13 m, RH_24 m, and RH_48 m) (℃ and %, respectively), wind speed (Ws_0.5 m, Ws_3 m, Ws_13 m, Ws_24 m, and Ws_48 m) (m/s), wind direction (WD_0.5 m, WD_3 m, WD_13 m, WD_24 m, and WD_48 m) (°), air pressure (press) (hpa), precipitation (rain) (mm), four-component radiation (DR, incoming shortwave radiation; UR, outgoing shortwave radiation; DLR_Cor, incoming longwave radiation; ULR_Cor, outgoing longwave radiation; Rn, net radiation) (W/m^2), infrared temperature (IRT_A, IRT_B) (℃), photosynthetically active radiation (PAR_A, PAR_B) (μmol/ (s m^2)), soil heat flux (Gs_0.05m, Gs_0.1m) (W/m^2), soil temperature (Ts_5 cm, Ts_10 cm, Ts_20 cm, Ts_40 cm, and Ts_60 cm) (℃), soil moisture (Ms_5 cm, Ms_10 cm, Ms_20 cm, Ms_40 cm, and Ms_60 cm) (%, volumetric water content),soil water potential (SWP_5cm, SWP_10cm, SWP_20cm, SWP_40cm, and SWP_60cm)(kpa), soil conductivity (Ec_5cm, Ec_10cm, Ec_20cm, Ec_40cm, and Ec_60cm)(μs/cm), sun time (h). The data processing and quality control steps were as follows: (1) The AWS data were averaged over intervals of 10 min for a total of 144 records per day. The soil water potential and moisture profile data were rejected because of sensor failure; (2) Data in duplicate records were rejected. (3) Unphysical data were rejected. (4) The data marked in red are problematic data. (5) The format of the date and time was unified, and the date and time were collected in the same column, for example, date and time: 2019-6-10 10:30.

0 2020-06-25

This dataset includes data recorded by the Cold and Arid Research Network of Lanzhou university obtained from an observation system of Meteorological elements gradient of Xiyinghe Station from January 1 to December 31, 2019. The site (101.853E, 37.561N) was located on a alpine meadow in the Menyuan, Qinghai Province. The elevation is 3639 m. The installation heights and orientations of different sensors and measured quantities were as follows: air temperature and humidity profile (2, 4, and 8 m, towards north), wind speed and direction profile (windsonic; 2, 4, and 8 m, towards north), air pressure (1.5 m), rain gauge (4 m), four-component radiometer (4 m, towards south), infrared temperature sensors (4 m, towards south, vertically downward), photosynthetically active radiation (4 m, towards south), soil heat flux (-0.05 m and -0.1m in south of tower), soil soil temperature/ moisture/ electrical conductivity profile (-0.2 and -0.4 m in south of tower), sunshine duration sensor (4 m, towards south). The observations included the following: air temperature and humidity (Ta_2 m, Ta_4 m, and Ta_8 m; RH_2 m, RH_4 m, and RH_8 m) (℃ and %, respectively), wind speed (Ws_2 m, Ws_4 m, and Ws_8 m) (m/s), wind direction (WD_2 m, WD_4 m, and WD_8 m) (°), air pressure (press) (hpa), precipitation (rain) (mm), four-component radiation (DR, incoming shortwave radiation; UR, outgoing shortwave radiation; DLR_Cor, incoming longwave radiation; ULR_Cor, outgoing longwave radiation; Rn, net radiation) (W/m^2), infrared temperature (IRT) (℃), photosynthetically active radiation (PAR) (μmol/ (s/m^2)), soil heat flux (Gs_5 cm, Gs_10cm) (W/m^2), soil temperature (Ts_20 cm, Ts_40 cm) (℃), soil moisture (Ms_20 cm, Ms_40 cm) (%, volumetric water content), soil water potential (SWP_20cm , SWP_40cm)(kpa) , soil conductivity (Ec_20cm, Ec_40cm)(μs/cm), sun time (h). The data processing and quality control steps were as follows: (1) The AWS data were averaged over intervals of 10 min for a total of 144 records per day. The wind speed and direction profile data were rejected because of sensor failure; The precipitation data were rejected because of program error; (2) Data in duplicate records were rejected. (3) Unphysical data were rejected. (4) The data marked in red are problematic data. (5) The format of the date and time was unified, and the date and time were collected in the same column, for example, date and time: 2019-6-10 10:30.

0 2020-06-25

Cold and Arid Research Network of Lanzhou university (an observation system of Meteorological elements gradient of Suganhu Station, 2019)

This dataset includes data recorded by the Cold and Arid Research Network of Lanzhou university obtained from an observation system of Meteorological elements gradient of Suganhu Station from November 27 to December 31, 2019. The site (94.12 E, 38.99 N) was located on a wetland in the Suganhu west lake, Gansu Province. The elevation is 2823 m. The installation heights and orientations of different sensors and measured quantities were as follows: air temperature and humidity profile (4m and 8 m, towards north), wind speed and direction profile (windsonic; 4m and 8 m, towards north), air pressure (1 m), rain gauge (4 m), infrared temperature sensors (4 m, towards south, vertically downward), soil heat flux (-0.05 and -0.1m ), soil soil temperature/ moisture/ electrical conductivity profile (below the vegetation in the south of tower, -0.1, -0.2 and -0.4m), photosynthetically active radiation (4 m, towards south), four-component radiometer (4 m, towards south), sunshine duration sensor(4 m, towards south). The observations included the following: air temperature and humidity (Ta_4 m, Ta_8 m; RH_4 m, RH_8 m) (℃ and %, respectively), wind speed (Ws_4 m, Ws_8 m) (m/s), wind direction (WD_4 m, WD_8 m) (°), air pressure (press) (hpa), precipitation (rain) (mm), four-component radiation (DR, incoming shortwave radiation; UR, outgoing shortwave radiation; DLR_Cor, incoming longwave radiation; ULR_Cor, outgoing longwave radiation; Rn, net radiation) (W/m^2), infrared temperature (IRT) (℃), photosynthetically active radiation (PAR) (μmol/ (s m-2)), soil heat flux (Gs_0.05m, Gs_0.1m) (W/m^2), soil temperature (Ts_0.1m, Ts_0.2m, Ts_0.4m) (℃), soil moisture (Ms_0.1m, Ms_0.2m, Ms_0.4m) (%, volumetric water content), soil conductivity (Ec_0.1m, Ec_0.2m, Ec_0.4m)(μs/cm), sun time(h). The data processing and quality control steps were as follows: (1) The AWS data were averaged over intervals of 10 min for a total of 144 records per day. The 40cm soil water potential data were rejected because of sensor error. (2) Data in duplicate records were rejected. (3) Unphysical data were rejected. (4) The data marked in red are problematic data. (5) The format of the date and time was unified, and the date and time were collected in the same column, for example, date and time: 2019-6-10 10:30.

0 2020-06-24

Basic datasets of the Tibetan Plateau in Chinese Cryospheric Information System

Chinese Cryospheric Information System is a comprehensive information system for the management and analysis of Chinese Cryospheric data. The establishment of Chinese Cryospheric Information System is to meet the needs of earth system science, to provide parameters and validation data for the development of response and feedback model of frozen soil, glacier and snow cover to global change under GIS framework; on the other hand, it is to systemically sort out and rescue valuable cryospheric data, to provide a scientific, efficient and safe management and division for it Analysis tools. The basic datasets of the Tibet Plateau mainly takes the Tibetan Plateau as the research region, ranging from longitude 70 -- 105 ° east and latitude 20 -- 40 ° north, containing the following types of data: 1. Cryosphere data. Includes: Permafrost type (Frozengd), (Fromap); Snow depth distribution (Snowdpt) Quatgla (Quatgla) 2. Natural environment and resources. Includes: Terrain: elevation, elevation zoning, slope, slope direction (DEM); Hydrology: surface water (Stram_line), (Lake); Basic geology: Quatgeo, Hydrogeo; Surface properties: Vegetat; 4. Climate data: temperature, surface temperature, and precipitation. 3. Socio-economic resources (Stations) : distribution of meteorological Stations on the Tibetan Plateau and it surrounding areas. 4. Response model of plateau permafrost to global change (named "Fgmodel"): permafrost distribution data in 2009, 2049 and 2099 were projected. Please refer to the following documents (in Chinese): "Design of Chinese Cryospheric Information System.doc", "Datasheet of Chinese Cryospheric Information System.DOC", "Database of the Tibetan Plateau.DOC" and "Database of the Tibetan Plateau 2.DOC".

0 2020-06-23

Basic datasets of the Tibetan highway in Chinese Cryospheric Information System

Chinese Cryospheric Information System is a comprehensive information system for the management and analysis of cryospheric data over China. The establishment of Chinese Cryospheric Information System is to meet the needs of earth system science, and provide parameters and verification data for the development of response and feedback models of permafrost, glacier and snow cover to global changes under GIS framework. On the other hand, the system collates and rescues valuable cryospheric data to provide a scientific, efficient and safe management and analysis tool. Chinese Cryospheric Information System selected three regions with different spatial scales as its main research areas to highlight the research focus. The research area along the Qinghai-Tibet highway is mainly about 700 kilometers long from Xidatan to Naqu, and 20 to 30 kilometers wide on both sides of the highway. The datasets of the Tibetan highway contains the following types of data: 1. Cryosphere data.Including: snow depth distribution. 2. Natural environment and resources.Include: Digital elevation topography (DEM) : elevation elevation, elevation zoning, slope and slope direction; Fundamental geology: Quatgeo 3. Boreholes: drilling data of 200 boreholes along the qinghai-tibet highway. Engineering geological profile (CAD) : lithologic distribution, water content, grain fraction data, etc 4. Model of glacier mass equilibrium distribution along qinghai-tibet highway: prediction of frozen soil grid data. The graphic data along the qinghai-tibet highway includes 13 map scales of 1:250,000.The grid size is 100×100m. For details, please refer to the documents (in Chinese): "Chinese Cryospheric Information System design. Doc", "Chinese Cryospheric Information System data dictionary. Doc", "Database of the Tibetan highway. Doc".

0 2020-06-23

Qilian Mountains integrated observatory network: Dataset of Heihe integrated observatory network (Cosmic-ray observation system of soil moisture of Sidaoqiao Superstation, 2019)

This dataset includes data recorded by the Heihe integrated observatory network obtained from a Cosmic-ray Soil Moisture Observing System of soil moisture of Sidaoqiao Superstation from January 1 to December 31, 2019. The site (101.1374° E, 42.0012° N) was located in the Ejina Banner in Inner Mongolia Autonomous Region. The elevation is 873 m. The bottom of the probe was 0.5 m above the ground; the sampling interval was 1 hour. The raw COSMOS data include the following: battery (Batt, V), temperature (T, C), relative humidity (RH, %), air pressure (P, hPa), fast neutron counts (N1C, counts per hour), thermal neutron counts (N2C, counts per hour), sample time of fast neutrons (N1ET, s), and sample time of thermal neutrons (N2ET, s). The distributed data include the following variables: Date, Time, P, N1C, N1C_cor (corrected fast neutron counts) and VWC (volume soil moisture, %), which were processed as follows: 1) Data were removed and replaced by -6999 when (a) the battery voltage was less than 11.8 V, (b) the relative humidity was greater than 80% inside the probe box, (c) the counting data were not of one-hour duration and (d) neutron count differed from the previous value by more than 20%; 2) An air pressure correction was applied to the quality-controlled raw data according to the equation contained in the equipment manual; 3) After the quality control and corrections were applied, soil moisture was calculated using the equation in Zreda et al. (2012), where N0 is the neutron counts above dry soil and the other variables are fitted constants that define the shape of the calibration function. Here, the parameter N0 was calibrated using the in situ observed soil moisture by SoilNET within the footprint; 4) Based on the calibrated N0 and corrected N1C, the hourly soil moisture was computed using the equation from the equipment manual. Moreover, suspicious data were marked in red. For more information, please refer to Liu et al. (2018) (for sites information), Zhu et al. (2015) for data processing) in the Citation section.

0 2020-06-17

Qilian Mountains integrated observatory network: Dataset of Heihe integrated observatory network (an observation system of Meteorological elements gradient of A’rou Superstation, 2019)

This dataset includes data recorded by the Heihe integrated observatory network obtained from an observation system of Meteorological elements gradient of A’rou Superstation from January 1 to December 31, 2019. The site (100.464° E, 38.047° N) was located on a cold grassland surface in the Caodaban village, A’rou Town, Qilian County, Qinghai Province. The elevation is 3033 m. The installation heights and orientations of different sensors and measured quantities were as follows: air temperature and humidity profile (HMP45C; 1, 2, 5, 10, 15 and 25 m, towards north), wind speed profile (010C; 1, 2, 5, 10, 15 and 25 m, towards north), wind direction profile (020C; 2 m, towards north), air pressure (CS100; 2 m), rain gauge (TE525M; 5 m, towards south), four-component radiometer (CNR4; 5 m, towards south), two infrared temperature sensors (SI-111; 5 m, towards south, vertically downward), photosynthetically active radiation (PAR-LITE; 5 m, towards south, vertically upward), soil heat flux (HFP01SC; 3 duplicates, -0.06 m, 2 m in the south of tower), a TCAV averaging soil thermocouple probe (TCAV; -0.02, -0.04 m, 2 m in the south of tower), soil temperature profile (109; 0, -0.02, -0.04, -0.06, -0.1, -0.15, -0.2, -0.3, -0.4, -0.6, -0.8, -1.2, -1.6, -2, -2.4, -2.8 and -3.2 m, 3 duplicates in -0.04 m and -0.1 m), and soil moisture profile (CS616; -0.02, -0.04, -0.06, -0.1, -0.15, -0.2, -0.3, -0.4, -0.6, -0.8, -1.2, -1.6, -2, -2.4, -2.8 and -3.2 m, 3 duplicates in -0.04 m and -0.1 m). The observations included the following: air temperature and humidity (Ta_1 m, Ta_2 m, Ta_5 m, Ta_10 m, Ta_15 m and Ta_25 m; RH_1 m, RH_2 m, RH_5 m, RH_10 m, RH_15 m and RH_25 m) (℃ and %, respectively), wind speed (Ws_1 m, Ws_2 m, Ws_5 m, Ws_10 m, Ws_15 m and Ws_25 m) (m/s), wind direction (WD_2 m) (°), air pressure (press) (hpa), precipitation (rain) (mm), four-component radiation (DR, incoming shortwave radiation; UR, outgoing shortwave radiation; DLR_Cor, incoming longwave radiation; ULR_Cor, outgoing longwave radiation; Rn, net radiation) (W/m2), infrared temperature (IRT_1 and IRT_2) (℃), photosynthetically active radiation (PAR) (μmol/(s m-2)), average soil temperature (TCAV, ℃), soil heat flux (Gs_1, Gs_2 and Gs_3) (W/m2), soil temperature (Ts_0 cm, Ts_2 cm, Ts_4 cm_1, Ts_4 cm_2, Ts_4 cm_3, Ts_6 cm, Ts_10 cm_1, Ts_10 cm_2, Ts_10 cm_3, Ts_15 cm, Ts_20 cm, Ts_30 cm, Ts_40 cm, Ts_60 cm, Ts_80 cm, Ts_120 cm, Ts_160 cm, Ts_200 cm, Ts_240 cm, Ts_280 cm and Ts_320 cm) (℃), and soil moisture (Ms_2 cm, Ms_4 cm_1, Ms_4 cm_2, Ms_4 cm_3, Ms_6 cm, Ms_10 cm_1, Ms_10 cm_2, Ms_10 cm_3, Ms_15 cm, Ms_20 cm, Ms_30 cm, Ms_40 cm, Ms_60 cm, Ms_80 cm, Ms_120 cm, Ms_160 cm, Ms_200 cm, Ms_240 cm, Ms_280 cm and Ms_320 cm) (%, volumetric water content). The data processing and quality control steps were as follows: (1) The AWS data were averaged over intervals of 10 min for a total of 144 records per day. The soil heat flux was missing during January 1 to 19 because of broken of the sensor line; Soil heat flux (G2) were wrong during July to August. The soil moisture and temperature data were missing during September 3 to October 27 due the data logger malfunction. The missing data were denoted by -6999. (2) Data in duplicate records were rejected. (3) Unphysical data were rejected. (4) The data marked in red are problematic data. (5) The format of the date and time was unified, and the date and time were collected in the same column, for example, date and time: 2019-9-10 10:30. (6) Finally, the naming convention was AWS+ site no. Moreover, suspicious data were marked in red. For more information, please refer to Liu et al. (2018) and Che et al. (2019) (for sites information), Liu et al. (2011) for data processing) in the Citation section.

0 2020-06-17

Qilian Mountains integrated observatory network: Dataset of Heihe integrated observatory network (eddy covariance system of Jingyangling station, 2019)

This dataset contains the flux measurements from the Jingyangling station eddy covariance system (EC) in the upstream reaches of the Heihe integrated observatory network from January 1 to November 1 in 2019. The site (101.1160E, 37.8384N) was located in the Jingyangling, near Qilian County in Qinghai Province. The elevation is 3750 m. The EC was installed at a height of 4.5 m, and the sampling rate was 10 Hz. The sonic anemometer faced north, and the separation distance between the sonic anemometer and the CO2/H2O gas analyzer (CSAT3&Li7500, CSAT3B & Li7500DS after September 30) was 0.15 m. The raw data acquired at 10 Hz were processed using the Eddypro post-processing software, including the spike detection, lag correction of H2O/CO2 relative to the vertical wind component, sonic virtual temperature correction, coordinate rotation (2-D rotation), corrections for density fluctuation (Webb-Pearman-Leuning correction), and frequency response correction. The EC data were subsequently averaged over 30 min periods. The observation data quality was divided into three classes according to the quality assessment method of stationarity (Δst) and the integral turbulent characteristics test (ITC): class 1-3 (high quality), class 4-6 (good), class 7-8 (poor, better than gap filling data), class9 (rejected). In addition to the above processing steps, the half-hourly flux data were screened in a four-step procedure: (1) data from periods of sensor malfunction were rejected; (2) data collected before or after 1 h of precipitation were rejected; (3) incomplete 30 min data were rejected when the missing data constituted more than 10% of the 30 min raw record. There were 48 records per day, and the missing data were replaced with -6999. Suspicious data were marked in red. Data during insufficient power supply, data were missing occasionally. The released data contained the following variables: data/time, wind direction (Wdir, °), wind speed (Wnd, m/s), the standard deviation of the lateral wind (Std_Uy, m/s), virtual temperature (Tv, ℃), H2O mass density (H2O, g/m3), CO2 mass density (CO2, mg/m3), friction velocity (ustar, m/s), stability (L), sensible heat flux (Hs, W/m2), latent heat flux (LE, W/m2), carbon dioxide flux (Fc, mg/ (m2s)), quality assessment of the sensible heat flux (QA_Hs), quality assessment of the latent heat flux (QA_LE), and quality assessment of the carbon flux (QA_Fc). In this dataset, the time of 0:30 corresponds to the average data for the period between 0:00 and 0:30; the data were stored in *.xls format. Detailed information can be found in the suggested references. For more information, please refer to Liu et al. (2018) and Che et al. (2019) (for sites information), Liu et al. (2011) for data processing) in the Citation section.

0 2020-06-17

Landsat-based continuous monthly 30m×30m Land Surface FVC Dataset in Qilian mountain area (V1.0)

This data set includes a monthly composite of 30 m × 30 m surface vegetation coverage products in the Qilian Mountain Area in 2019. In this paper, the maximum value composition (MVC) method is used to synthesize monthly NDVI products and calculate FVC by using the reflectance data of Landsat 8 and sentinel 2 red and near infrared channels. The data is monthly synthesized by Google Earth engine cloud platform, and the index is calculated by the model. The missing pixels are interpolated with good quality, which can be used in environmental change monitoring and other fields.

0 2020-06-15

Qilian Mountains integrated observatory network: Dataset of Heihe integrated observatory network (Cosmic-ray observation system of soil moisture of Arou Superstation, 2019)

This dataset includes data recorded by the Heihe integrated observatory network obtained from a Cosmic-ray Soil Moisture Observing System of soil moisture of Arou Superstation from January 1 to December 31, 2019. The site (100.372° E, 38.856° N) was located in the Daban Village, near Qilian County in Qinghai Province. The elevation is 3033 m. The bottom of the probe was 0.5 m above the ground; the sampling interval was 1 hour. The raw COSMOS data include the following: battery (Batt, V), temperature (T, C), relative humidity (RH, %), air pressure (P, hPa), fast neutron counts (N1C, counts per hour), thermal neutron counts (N2C, counts per hour), sample time of fast neutrons (N1ET, s), and sample time of thermal neutrons (N2ET, s). The distributed data include the following variables: Date, Time, P, N1C, N1C_cor (corrected fast neutron counts) and VWC (volume soil moisture, %), which were processed as follows: 1) Data were removed and replaced by -6999 when (a) the battery voltage was less than 11.8 V, (b) the relative humidity was greater than 80% inside the probe box, (c) the counting data were not of one-hour duration and (d) neutron count differed from the previous value by more than 20%; 2) An air pressure correction was applied to the quality-controlled raw data according to the equation contained in the equipment manual; 3) After the quality control and corrections were applied, soil moisture was calculated using the equation in Zreda et al. (2012), where N0 is the neutron counts above dry soil and the other variables are fitted constants that define the shape of the calibration function. Here, the parameter N0 was calibrated using the in situ observed soil moisture by SoilNET within the footprint; 4) Based on the calibrated N0 and corrected N1C, the hourly soil moisture was computed using the equation from the equipment manual. Moreover, suspicious data were marked in red. For more information, please refer to Liu et al. (2018) and Che et al. (2019) (for sites information), Zhu et al. (2015) for data processing) in the Citation section.

0 2020-06-14