Daily 0.01°×0.01° Land Surface Soil Moisture Dataset of the Qinghai-Tibet Plateau (SMHiRes, V1)

This dataset contains daily 0.01°×0.01° land surface soil moisture products in the Qinghai-Tibet Plateau in 2005, 2010, 2015, 2017, and 2018. The dataset was produced by utilizing the multivariate statistical regression model to downscale the “SMAP Time-Expanded 0.25°×0.25° Land Surface Soil Moisture Dataset in the Qinghai-Tibet Plateau (SMsmapTE, V1)”. The auxiliary datasets participating in the multivariate statistical regression include GLASS Albedo/LAI/FVC, 1km all-weather surface temperature data in western China by Ji Zhou, and Lat/Lon information.

0 2020-09-25

Daily precipitation data with 10km resolution in the upper Brahmaputra (Yarlung Zangbo River) Basin (1961-2016)

Daily precipitation data was reconstructed for streamflow simulation in the entire UB by combining orographic and linear correction approaches based on 262 gauge observations. The reconstructed precipitation is used to drive the VIC hydrological model linked with a temperature-index model (VIC-Glacier) , and is inversely evaluated by comparing with observed discharge, glacier area changes, and MODIS-based snow cover faction (SCF) data in the upper Brahmaputra Basin.

0 2020-09-24

"One belt, one road" boundary map of key basins in Asia

"One belt, one road" delineation of the key Asian regional watershed boundaries is based on the following principles: Principle 1: along the Silk Road Principle 2: located in arid and semi-arid areas Principle 3: high water risk Principle 4: watershed integrity 1. Division basis of arid area Food and Agriculture Organization of the United Nations. FAO GEONETWORK. Global map of aridity - 10 arc minutes (GeoLayer). (Latest update: 04 Jun 2015) Accessed (6 Mar 2018). URI: http://data.fao.org/ref/221072ae-2090-48a1-be6f-5a88f061431a.html?version=1.0 2. Water resources risk data: Gassert, F., M. Landis, M. Luck, P. Reig, and T. Shiao. 2014. Aqueduct Global Maps 2.1. Working Paper. Washington, DC: World Resources Institute. 3. Poverty index data: Elvidge C D, Sutton P C, Ghosh T, et al. A global poverty map derived from satellite data. Computers & Geosciences, 2009, 35(8): 1652-1660. https://www.ngdc.noaa.gov/eog/dmsp/download_ poverty.html 4. Basic basin boundary data: (1) Watershed boundaries were derived from HydroSHEDS drainage basins data (Lehner and Grill 2013) based on a grid resolution of 15 arc-seconds (approximately 500 m at the equator), which can be free download via https://hydrosheds.cr.usgs.gov/hydro.php (2) AQUASTAT Hydrological basins: This dataset is developed as part of a GIS-based information system on water resources. It has been published in the framework of the AQUASTAT - programme of the Land and Water Division of the Food and Agriculture Organization of the United Nations. The map is also available in the SOLAW Report 15: “Sustainable options for addressing land and water problems – A problem tree and case studies”. Data can be free download via http://www.fao.org/nr/water/aquamaps/ (3) HydroBASINS: https://www.hydrosheds.org/downloads 5. The GloRiC provides a database of river types and sub-classifications for all river reaches globally. https://www.hydrosheds.org/page/gloric 6. HydroATLAS offers a global compendium of hydro-environmental sub-basin and river reach characteristics at 15 arc-second resolution. https://www.hydrosheds.org/page/hydroatlas It covers an area of 1469400 square kilometers, including the following areas: Nujiang River Basin, Dead Sea basin, Sistan River Basin, Yellow River Basin, Jordan Syria eastern basin, Indus River Basin, Iran inland flow area, urmiya Lake Basin, Shiyang River Basin, hallelud mulgarb River Basin, Lianghe River Basin, Shule River Basin, Heihe River Basin, issekkor Lake Basin, Tata River Basin Limu River Basin, Turpan Hami basin, Ebinur Lake Basin, Junggar basin, Amu Darya River Basin, Manas River Basin, ulungu River Basin, Emin River Basin, Chu River Talas River Basin, Xil River Basin, Ili River Basin, Caspian Sea basin, Lancang River Basin, Yangtze River Basin, Qinghai lake water system, Eastern Qaidam Basin, western Qaidam Basin and Qiangtang plateau District, Yarlung Zangbo River Basin

0 2020-09-24

Data set of δ18O stable Isotopes in Precipitation from Tibetan Network for Isotopes(1991–2008)

The stable oxygen isotope ratio (δ 18O) in precipitation is a comprehensive tracer of global atmospheric processes. Since the 1990s, efforts have been made to study the isotopic composition of precipitation at more than 20 stations located on the TP of the Tibetan Plateau, which are located at the air mass intersection between westerlies and monsoons. In this paper, we establish a database of monthly precipitation δ 18O over the Tibetan Plateau and use different models to evaluate the climate control of precipitation δ 18O over TP. The spatiotemporal pattern of precipitation δ 18O and its relationship with temperature and precipitation reveal three different domains, which are respectively related to westerly wind (North TP), Indian monsoon (South TP) and their transition.

0 2020-09-22

Precipitation stable isotopes data in Bomi (2018)

The data includes the daily mean value of stable isotope δ18O in precipitation, the air temperature and precipitation amounts in Bomi in 2018; the precipitation samples are collected by Bomi meteorological station, and the stable isotope of precipitation is measured at the Laboratoire des Sciences du Climat et de l’Environnement, France., The δ18O amounts were measured by equilibration on a MAT-252 mass spectrometer, with an analytical precision of 0.05‰. The air temperatures and precipitation amounts were recorded for each precipitation events at Bomi meteorological stations, through the average of the observed temperature before and after the precipitation event, and through the total precipitation amount for each event. The data study has been published in the Journal of Climate, entitled Precipitation Water Stable Isotopes in the South Tibetan Plateau: Observations and Modeling.

0 2020-09-22

Precipitation stable isotope data set of multiple observation sites in Bangladesh(2017-2018)

The data set is the daily precipitation stable isotope data (δ 18O, δ D, d-excess) from Satkhira, Barisal and sylhet3 stations in Bangladesh from 2017 to 2018. The data set was collected by Bangladesh Atomic Energy Commission (BAEC) and measured by picarro l2130i wavelength scanning cavity ring down spectrometer in the Key Laboratory of environment and surface processes, Institute of Qinghai Tibet Plateau, Chinese Academy of Sciences. Sampling location and time of three observation points: Satkhira :2017.03.11-2018.07.16 Barisal:2017.03.05-2018.07.02 Sylhet : 2017.02.20-2018.09.04

0 2020-09-22

Hydrogen and oxygen stable isotope data set of Kathmandu precipitation (2016-2018)

Precipitation stable isotopes (2H and 18O) are adequately understood on their climate controls in the Tibetan Plateau, especially the north of Himalayas via about 30 years’ studies. However, knowledge of controls on precipitation stable isotopes in Nepal (the south of Himalayas), is still far from sufficient. This study described the intra-seasonal and annual variations of precipitation stable isotopes at Kathmandu, Nepal from 10 May 2016 to 21 September 2018 and analysed the possible controls on precipitation stable isotopes. All samples are located in Kathmandu, the capital of Nepal (27 degrees north latitude, 85 degrees east longitude), with an average altitude of about 1400 m. Combined with the meteorological data from January 1, 2001 to September 21, 2018, the values of precipitation (P), temperature (T) and relative humidity (RH) are given.

0 2020-09-22

Data set of oxygen stable isotopes for NoijinKangsang ice core(1864-2006)

The data set contains the stable oxygen isotope data of ice core from 1864 to 2006. The ice core was obtained from Noijinkansang glacier in the south of Southern Tibetan Plateau, with a length of 55.1 meters. Oxygen isotopes were measured using a MAT-253 mass spectrometer (with an analytical precision of 0.05 ‰) at the Key Laboratory of CAS for Tibetan Environment and Land Surface Processes, China. Data collection location: Noijinkansang glacier (90.2 ° e, 29.04 ° n, altitude: 5950 m)

0 2020-09-22

Data set of glacier advance and retreat range in Karakoram area

The ages of glacial traces of the last glacial maximum, Holocene and little ice age in the Westerlies and monsoon areas were determined by Cosmogenic Nuclide (10Be and 26Al) exposure dating method to determine the absolute age sequence of glacial advance and retreat. The distribution of glacial remains is investigated in the field, the location of moraine ridge is determined, and the geomorphic characteristics of moraine ridge are measured. According to the geomorphic location and weathering degree of glacial remains, the relationship between the new and the old is determined, and the moraine ridge of the last glacial maximum is preliminarily determined. The exposed age samples of glacial boulders on each row of moraine ridges were collected from the ridge upstream. This data includes the range of glacier advance and retreat in Karakoram area during climate transition period based on 10Be exposure age method.

0 2020-09-16

Terrestrial evapotranspiration dataset across China (1982-2017)

This dataset (version 1.5) is derived from the complementary-relationship method, with inputs of CMFD downward short- and long-wave radiation, air temperature, air pressure, GLASS albedo and broadband longwave emissivity, ERA5-land land surface temperature and humidity, and NCEP diffuse skylight ratio, etc. This dataset covers the period of 1982-2017, and the spatial coverage is Chinese land area. This dataset would be helpful for long-term hydrological cycle and climate change research. Land surface actual evapotranspiration (Ea),unit: mm month-1. The spatial resolution is 0.1-degree; The temporal resolution is monthly; The data type is NetCDF; This evapotranspiration dataset is only for land surface.

0 2020-09-16