Framework of mechanistic model for predicting vulnerability of reptile (ectotherm) under climate change

This framework aims to explore the impact of climate change on the fitness of ectotherms. We obtain the morphology, physiology, behavior and life history parameters of the animals by consulting literature and experimental research; then use the microclimate model and global warming data to obtain microclimate data at the current and the end of the century; and then use the biophysical model to calculate adult body temperature and embryonic developmental temperature. We construct a life history mechanism model to calculate the energy budget of the reproductive female and the total energy of the surviving offspring, and assess the vulnerability of ectotherms in each region. The main point of this study is to construct a segmental life history mechanism model for species of two reproductive modes, so that the start time and duration of each life history can be dynamically calculated, and the energy of each life history stage can be calculated by combining energy metabolic and embryonic development models.

0 2019-10-31

Dataset of soil water erosion modulus with 5 m resolution in 18 watersheds of Thailand (2018)

1) The data includes the soil erosion modulus of 18 watersheds with a resolution of 5 m in the year of 2017 in Thailand. 2) Based on the surface layer of rainfall erosivity R, soil erodibility K, slope length factor LS, vegetation coverage FVC, and rotation sampling survey unit, the Chinese soil erosion model (CSLE) was used to calculate soil erosin modulus in 18 watersheds of Thailand respectively. Through spatial data processing (including chart linking and transformation, vector-grid conversion, and resampling), R, K, LS factors were calculated from the regional thematic map of rainfall erosivity, soil erodibility, and DEM. By half-month FVC, NPV, half-month rainfall erosivity data, we calculated the value of B factors in each sampling watershed. The value of E factor was calculated based on the remote sensing interpretation result and engineering measure factor table. The value of tillage factor T was obtained from tillage zoning map and tillage measure table. And then the soil erosion modulus in each sampling watershed was calculated by the equation: A=R•K•LS•B•E•T. The selection of 18 watersheds was based on the layout of sampling survey in pan-third polar region. 3) Compared with the data of soil erosion intensity in the same region in the same year, there is no significant difference and the data quality is good.4) the data of soil erosion intensity is of great significance for studying the present situation of soil erosion in Pan third polar region and better implementation of the development policy of the Silk Road Economic Belt and the 21st-Century Maritime Silk Road.

0 2019-10-18

Qilian Mountains integrated observatory network: Dataset of the Heihe River Basin integrated observatory network (eddy covariance system of Sidaoqiao superstation, 2018)

This dataset contains the flux measurements from the Sidaoqiao superstation eddy covariance system (EC) in the downstream reaches of the Heihe integrated observatory network from January 1 to December 31 in 2018. The site (101.1374° E, 42.0012° N) was located in the Ejina Banner in Inner Mongolia Autonomous Region . The elevation is 873 m. The EC was installed at a height of 3.2 m, and the sampling rate was 10 Hz. The sonic anemometer faced north, and the separation distance between the sonic anemometer and the CO2/H2O gas analyzer (CSAT3&Li7500A) was 0.15 m. The raw data acquired at 10 Hz were processed using the Eddypro post-processing software, including the spike detection, lag correction of H2O/CO2 relative to the vertical wind component, sonic virtual temperature correction, coordinate rotation (2-D rotation), corrections for density fluctuation (Webb-Pearman-Leuning correction), and frequency response correction. The EC data were subsequently averaged over 30 min periods. The observation data quality was divided into three classes according to the quality assessment method of stationarity (Δst) and the integral turbulent characteristics test (ITC): class 1-3 (high quality), class 4-6 (good), class 7-8 (poor, better than gap filling data), class9 (rejected). In addition to the above processing steps, the half-hourly flux data were screened in a four-step procedure: (1) data from periods of sensor malfunction were rejected; (2) data collected before or after 1 h of precipitation were rejected; (3) incomplete 30 min data were rejected when the missing data constituted more than 10% of the 30 min raw record. There were 48 records per day, and the missing data were replaced with -6999. Suspicious data were marked in red. Latent heat flux during November 9 to 21, 2018 were missing due to the sensor malfunction of CO2/H2O gas analyzer. The released data contained the following variables: data/time, wind direction (Wdir, °), wind speed (Wnd, m/s), the standard deviation of the lateral wind (Std_Uy, m/s), virtual temperature (Tv, ℃), H2O mass density (H2O, g/m3), CO2 mass density (CO2, mg/m3), friction velocity (ustar, m/s), stability (L), sensible heat flux (Hs, W/m2), latent heat flux (LE, W/m2), carbon dioxide flux (Fc, mg/ (m2s)), quality assessment of the sensible heat flux (QA_Hs), quality assessment of the latent heat flux (QA_LE), and quality assessment of the carbon flux (QA_Fc). In this dataset, the time of 0:30 corresponds to the average data for the period between 0:00 and 0:30; the data were stored in *.xls format. Detailed information can be found in the suggested references. For more information, please refer to Liu et al. (2018) (for sites information), Liu et al. (2011) for data processing) in the Citation section.

0 2019-09-15

Qilian Mountains integrated observatory network: Dataset of the Heihe River Basin integrated observatory network (automatic weather station of Jingyangling station, 2018)

This dataset includes data recorded by the Heihe integrated observatory network obtained from the automatic weather station (AWS) at the Jingyangling station from January 1 to December 31, 2018. The site (101.116° E, 37.838° N) was located on a cold meadow surface in the Jingyangling, Qilian County, Qinghai Province. The elevation is 3750 m. The installation heights and orientations of different sensors and measured quantities were as follows: air temperature and humidity (5 m, north), wind speed and direction (10 m, north), air pressure (in the tamper box on the ground), rain gauge (10 m), four-component radiometer (6 m, south), two infrared temperature sensors (6 m, south, vertically downward), soil heat flux (3 duplicates, -0.06 m), soil temperature profile (0, -0.04, -0.1, -0.2, -0.4, -0.8, -1.2, and -1.6 m), and soil moisture profile (-0.04, -0.1, -0.2, -0.4, -0.8, -1.2, and -1.6 m). The observations included the following: air temperature and humidity (Ta_5 m; RH_5 m) (℃ and %, respectively), wind speed (Ws_10 m) (m/s), wind direction (WD_10 m) (°), air pressure (press) (hpa), precipitation (rain) (mm), four-component radiation (DR, incoming shortwave radiation; UR, outgoing shortwave radiation; DLR_Cor, incoming longwave radiation; ULR_Cor, outgoing longwave radiation; Rn, net radiation) (W/m^2), infrared temperature (IRT_1 and IRT_2) (℃), soil heat flux (Gs_1, Gs_2 and Gs_3) (W/m^2), soil temperature (Ts_0 cm, Ts_4 cm, Ts_10 cm, Ts_20 cm, Ts_40 cm, Ts_80 cm, Ts_120 cm, and Ts_160 cm) (℃), and soil moisture (Ms_4 cm, Ms_10 cm, Ms_20 cm, Ms_40 cm, Ms_80 cm, Ms_120 cm, and Ms_160 cm) (%, volumetric water content). The data processing and quality control steps were as follows: (1) The AWS data were averaged over intervals of 10 min for a total of 144 records per day. The missing data were denoted by -6999. Due to the snow cover the solar panel causing insufficient power supply, data during December 13-21 were missing; due to the sensor malfunction, there were some NAN invalid values during May 29 to June 22 and July 16 to August 19 of the wind speed and direction; incorrect data of longwave radiation during December 13 to 31; incorrect data of 4 cm depth soil moisture during January 1 to 3 and April 1 to May 20; (2) Data in duplicate records were rejected. (3) Unphysical data were rejected. (4) The data marked in red are problematic data. (5) The format of the date and time was unified, and the date and time were collected in the same column, for example, date and time: 2018-9-10 10:30. (6) Finally, the naming convention was AWS+ site no. Moreover, suspicious data were marked in red. For more information, please refer to Liu et al. (2018) (for sites information), Liu et al. (2011) for data processing) in the Citation section.

0 2019-09-15

Qilian Mountains integrated observatory network: Cold and Arid Research Network of Lanzhou university (an observation system of meteorological elements gradient of Sidalong Station, 2018)

This dataset includes data recorded by the Cold and Arid Research Network of Lanzhou university obtained from an observation system of Meteorological elements gradient of Sidalong Station from October 24 to December 31, 2018. The site (38.430°E, 99.931°N) was located on a forest in the Kangle Sunan, which is near Zhangye city, Gansu Province. The elevation is 3059 m. The installation heights and orientations of different sensors and measured quantities were as follows: air temperature and humidity profile (0.5, 3, 13, 24, and 48 m), wind speed and direction profile (windsonic; 0.5, 3, 13, 24, and 48 m), air pressure (1.5 m), rain gauge (24 m), infrared temperature sensors (4 m and 24m, vertically downward), photosynthetically active radiation (4 m and 24m), soil heat flux (-0.05 m and -0.1m), soil temperature/ moisture/ electrical conductivity profile -0.05, -0.1m, -0.2m, -0.4m and -0.6mr), four-component radiometer (24 m, towards south), sunshine duration sensor(24 m, towards south). The observations included the following: air temperature and humidity (Ta_0.5 m, Ta_3 m, Ta_13 m, Ta_24 m, and Ta_48 m; RH_0.5 m, RH_3 m, RH_13 m, RH_24 m, and RH_48 m) (℃ and %, respectively), wind speed (Ws_0.5 m, Ws_3 m, Ws_13 m, Ws_24 m, and Ws_48 m) (m/s), wind direction (WD_0.5 m, WD_3 m, WD_13 m, WD_24 m, and WD_48 m) (°), air pressure (press) (hpa), precipitation (rain) (mm), four-component radiation (DR, incoming shortwave radiation; UR, outgoing shortwave radiation; DLR_Cor, incoming longwave radiation; ULR_Cor, outgoing longwave radiation; Rn, net radiation) (W/m^2), infrared temperature (IRT_A, IRT_B) (℃), photosynthetically active radiation (PAR_A, PAR_B) (μmol/ (s m^2)), soil heat flux (Gs_0.05m, Gs_0.1m) (W/m^2), soil temperature (Ts_5 cm, Ts_10 cm, Ts_20 cm, Ts_40 cm, and Ts_60 cm) (℃), soil moisture (Ms_5 cm, Ms_10 cm, Ms_20 cm, Ms_40 cm, and Ms_60 cm) (%, volumetric water content),soil water potential (SWP_5cm, SWP_10cm, SWP_20cm, SWP_40cm, and SWP_60cm)(kpa), soil conductivity (Ec_5cm, Ec_10cm, Ec_20cm, Ec_40cm, and Ec_60cm)(μs/cm), sun time (h). The data processing and quality control steps were as follows: (1) The AWS data were averaged over intervals of 10 min for a total of 144 records per day. The soil water potential in the area is so low that it has exceeded the sensor measurements. (2) Data in duplicate records were rejected. (3) Unphysical data were rejected. (4) The data marked in red are problematic data. (5) The format of the date and time was unified, and the date and time were collected in the same column, for example, date and time: 2018-6-10 10:30.

0 2019-09-15

Qilian Mountains integrated observatory network: cold and arid research network of Lanzhou university (an observation system of meteorological elements gradient of Xiyinghe station, 2018)

This dataset includes data recorded by the Cold and Arid Research Network of Lanzhou university obtained from an observation system of Meteorological elements gradient of Xiyinghe Station from January 1 to December 31, 2018. The site (101.853E, 37.561N) was located on a alpine meadow in the Menyuan,Qinghai Province. The elevation is 3639 m. The installation heights and orientations of different sensors and measured quantities were as follows: air temperature and humidity profile (2, 4, and 8 m, towards north), wind speed and direction profile (windsonic; 2, 4, and 8 m, towards north), air pressure (1.5 m), rain gauge (4 m), four-component radiometer (4 m, towards south), infrared temperature sensors (4 m, towards south, vertically downward), photosynthetically active radiation (4 m, towards south), soil heat flux (-0.05 m and -0.1m in south of tower), soil soil temperature/ moisture/ electrical conductivity profile (-0.2 and -0.4 m in south of tower), sunshine duration sensor (4 m, towards south). The observations included the following: air temperature and humidity (Ta_2 m, Ta_4 m, and Ta_8 m; RH_2 m, RH_4 m, and RH_8 m) (℃ and %, respectively), wind speed (Ws_2 m, Ws_4 m, and Ws_8 m) (m/s), wind direction (WD_2 m, WD_4 m, and WD_8 m) (°), air pressure (press) (hpa), precipitation (rain) (mm), four-component radiation (DR, incoming shortwave radiation; UR, outgoing shortwave radiation; DLR_Cor, incoming longwave radiation; ULR_Cor, outgoing longwave radiation; Rn, net radiation) (W/m^2), infrared temperature (IRT) (℃), photosynthetically active radiation (PAR) (μmol/ (s/m^2)), soil heat flux (Gs_5 cm, Gs_10cm) (W/m^2), soil temperature (Ts_20 cm, Ts_40 cm) (℃), soil moisture (Ms_20 cm, Ms_40 cm) (%, volumetric water content), soil water potential (SWP_20cm , SWP_40cm)(kpa) , soil conductivity (Ec_20cm, Ec_40cm)(μs/cm), sun time (h). The data processing and quality control steps were as follows: (1) The AWS data were averaged over intervals of 10 min for a total of 144 records per day. The meteorological data were missing during Aug. 29 to Oct.18 because of unstable power supply due to battery box flooding; The wind speed and direction profile data were rejected because of sensor failure; The precipitation data were rejected because of program error; The air humidity data before Mar. 2 were rejected due to program error; (2) Data in duplicate records were rejected. (3) Unphysical data were rejected. (4) The data marked in red are problematic data. (5) The format of the date and time was unified, and the date and time were collected in the same column, for example, date and time: 2018-6-10 10:30.

0 2019-09-15

Aerial data of the Tibetan Plateau (2018)

The data set was acquired by uav aerial photography during the field investigation on the Tibetan Plateau in 2018. The data size was 5.72 GB, including more than 800 photos.The photo was taken from July 19, 2008 to July 26, 2008. The shooting locations mainly include yambajing, keshi village, apaixin village, zhongguo village, mirin village, ri village, chongkang village, kesong village, semi village, yamzhuo yoncho and the surrounding areas.Aerial photos more clearly reflect the local land cover, land use type distribution density, rivers and lakes, vegetation, etc.), work for land use remote sensing provides better validation information, can also be used for the estimation of vegetation coverage, for the study of land use in the study area provided a good reference information.

0 2019-09-15

Spatial pattern data of five major cities in central Asia - Dushanbe (1990、2018)

Land use data of Dushanbe, with a resolution of 30 meters, was in the form of TIF and the time was 1990.03.03 and 2018.03.16, respectively.Data source GLC, the raw data of its global land cover data comes from Envisat satellite and is captured by MERIS (Medium Resolution Imaging Spectrometer) sensor.There are currently two issues, GlobCover (Global Land Cover Map) and GlobCover (Global Land Cover Product).

0 2019-09-15

Qilian Mountains integrated observatory network: Dataset of Heihe integrated observatory network (an observation system of meteorological elements gradient of Sidaoqiao superstation, 2018)

This dataset includes data recorded by the Heihe integrated observatory network obtained from an observation system of Meteorological elements gradient of Sidaoqiao Superstation from January 1 to December 31, 2018. The site (101.137° E, 42.001° N) was located on a tamarix (Tamarix chinensis Lour.) surface in the Sidaoqiao, Dalaihubu Town, Ejin Banner, Inner Mongolia Autonomous Region. The elevation is 873 m. The installation heights and orientations of different sensors and measured quantities were as follows: air temperature and humidity profile (HC2S3; 5, 7, 10, 15, 20 and 28 m, towards north), wind speed profile (010C; 5, 7, 10, 15, 20 and 28 m, towards north), wind direction profile (020C; 15 m, towards north), air pressure (CS100; in waterproof box), rain gauge (TE525M; 28 m, towards south), four-component radiometer (CNR4; 10 m, towards south), two infrared temperature sensors (SI-111; 10 m, towards south, vertically downward), two photosynthetically active radiation (PQS-1; 10 m, towards south, one vertically upward and one vertically downward), soil heat flux (HFP01SC; 3 duplicates with G1 below the tamarix; G2 and G3 between plants, -0.06 m), a TCAV averaging soil thermocouple probe (installed on 17 July, 2013, TCAV; -0.02, -0.04 m), soil temperature profile (109ss-L; 0, -0.02, -0.04, -0.1, -0.2, -0.4, -0.8, -1.2, -1.6, -2.0 m), and soil moisture profile (install on 7 December, 2013, ML2X; -0.02, -0.04, -0.1, -0.2, -0.4, -0.8, -1.2, -1.6, -2.0 m). The observations included the following: air temperature and humidity (Ta_5 m, Ta_7 m, Ta_10 m, Ta_15 m, Ta_20 m and Ta_28 m; RH_5 m, RH_7 m, RH_10 m, RH_15 m, RH_20 m and RH_28 m) (℃ and %, respectively), wind speed (Ws_5 m, Ws_7 m, Ws_10 m, Ws_15 m, Ws_20 m and Ws_28 m) (m/s), wind direction (WD_15 m) (°), air pressure (press) (hpa), precipitation (rain) (mm), four-component radiation (DR, incoming shortwave radiation; UR, outgoing shortwave radiation; DLR_Cor, incoming longwave radiation; ULR_Cor, outgoing longwave radiation; Rn, net radiation) (W/m^2), infrared temperature (IRT_1 and IRT_2) (℃), photosynthetically active radiation of upward and downward (PAR_up and PAR_down) (μmol/ (s m^-2)), average soil temperature (TCAV, ℃), soil heat flux (Gs_1, Gs_2 and Gs_3) (W/m^2), soil temperature (Ts_0 cm, Ts_2 cm, Ts_4 cm, Ts_10 cm, Ts_20 cm, Ts_40 cm, Ts_80 cm, Ts_120 cm, Ts_160 cm, Ts_200 cm) (℃), and soil moisture (Ms_2 cm, Ms_4 cm, Ms_10 cm, Ms_20 cm, Ms_40 cm, Ms_80 cm, Ms_120 cm, Ms_160 cm, Ms_200 cm) (%, volumetric water content). The data processing and quality control steps were as follows: (1) The AWS data were averaged over intervals of 10 min for a total of 144 records per day. The precipitation data was wrong during January to June because of the sensor problem; the air pressure data was wrong during July to October because of sensor line broken. The missing data were denoted by -6999. (2) Data in duplicate records were rejected. (3) Unphysical data were rejected. (4) The data marked in red are problematic data. (5) The format of the date and time was unified, and the date and time were collected in the same column, for example, date and time: 2018-9-10 10:30. (6) Finally, the naming convention was AWS+ site no. Moreover, suspicious data were marked in red. For more information, please refer to Liu et al. (2018) (for sites information), Liu et al. (2011) for data processing) in the Citation section.

0 2019-09-15

Qilian Mountains integrated observatory network: cold and arid research network of Lanzhou university (an observation system of meteorological elements gradient of Dayekou Station, 2018)

This dataset includes data recorded by Cold and Arid Research Network of Lanzhou university obtained from an observation system of Meteorological elements gradient of Dayekou Station from January 1 to December 31, 2018. The site (100.285° E, 38.555° N) was located on a glassland in the Dayekou, which is near Zhangye city, Gansu Province. The elevation is 2694 m. The installation heights and orientations of different sensors and measured quantities were as follows: air temperature and humidity profile (8 m), air pressure (2 m), rain gauge (2 m), infrared temperature sensors (2 m, towards south, vertically downward), soil heat flux (below the vegetation, -0.05 m; towards south), soil soil temperature/moisture/electrical conductivity profile (-0.05 m) photosynthetically active radiation (2 m, towards south), four-component radiometer (2 m, towards south), sunshine duration sensor(2 m, towards south). The observations included the following: air temperature and humidity (Ta_8m; RH_3m, RH_5 m, RH_8m) (℃ and %, respectively), wind speed (Ws_8m) (m/s), wind direction (WD_8m) (°), air pressure (press) (hpa), precipitation (rain) (mm), four-component radiation (DR, incoming shortwave radiation; UR, outgoing shortwave radiation; DLR_Cor, incoming longwave radiation; ULR_Cor, outgoing longwave radiation; Rn, net radiation) (W/m^2), infrared temperature (℃), photosynthetically active radiation (PAR) (μmol/ (s m^2)), soil heat flux (Gs_5 cm) (W/m^2), soil temperature (Ts_5cm)(℃), soil moisture (Ms_5cm)(%, volumetric water content), photosynthetically active radiation (μmol/ (s m^2)), soil water potential (Swp_5cm)(kpa), soil conductivity (Ec_5cm)(μs/cm), sun time(h). The data processing and quality control steps were as follows: (1) The AWS data were averaged over intervals of 10 min for a total of 144 records per day. The data were missing during Aug 29 to Oct 18 because the battery is unstable; Some meterological data were wrong because the malfunction of datalogger (1.3-1.6;1.8-1.11;1.14-1.20;1.23-1.30;2.9-2.22;2.28-3.23;3.28-5.12); The air humidity data were rejected due to program error. (2) Data in duplicate records were rejected. (3) Unphysical data were rejected. (4) The data marked in red are problematic data. (5) The format of the date and time was unified, and the date and time were collected in the same column, for example, date and time: 2018-6-10 10:30.

0 2019-09-15