8 km resolution evapotranspiration dataset of the Tibetan Plateau (1990-2015)

Evapotranspiration over the Qinghai Tibet Plateau is calculated by etwatch, a land surface evapotranspiration remote sensing model based on multi-scale and multi-source data. Etwatch adopts the method of combining the residual term method with P-M formula to calculate evapotranspiration. Firstly, according to the characteristics of the data image, the suitable model is selected to retrieve the evapotranspiration on a sunny day; the remote sensing model is often lack of data because the weather conditions can not obtain a clear image. In order to obtain the daily continuous evapotranspiration, the penman Monteith formula is introduced, and the evapotranspiration results on a sunny day are regarded as the "key frame", and the surface impedance information of the key frame is used as the basis to construct the surface impedance Based on the daily meteorological data, the time series data of evapotranspiration are reconstructed. Through the data fusion model, the high spatial and temporal resolution evapotranspiration data set is constructed by combining the low and medium resolution evapotranspiration temporal variation information with the high resolution evapotranspiration spatial difference information, so as to generate the 8 km resolution evapotranspiration of the Qinghai Tibet Plateau Data sets (1990-2015).

0 2022-04-18

Remote sensing inversion product of diurnal evapotranspiration in the middle reaches of Heihe River (2012)

Evapotranspiration monitoring is very important for agricultural water resource management, regional water resource utilization planning and sustainable development of social economy. The limitation of traditional monitoring et method is that it can't be observed in large area at the same time, so it can only be limited to the observation point. Therefore, the cost of personnel and equipment is relatively high. It can't provide the ET data of different land use types and crop types. Remote sensing can be used for quantitative monitoring of ET. the feature of remote sensing information is that it can reflect not only the macro structural characteristics of the earth's surface, but also the micro local differences. This data uses MODIS data and m-sebal model from June to September 2012 and time scale expansion scheme based on reference evaporation ratio to estimate the spatial and temporal distribution of evapotranspiration in the whole growth season of the middle reaches of Heihe River, and uses ground observation data to evaluate m-sebal model and time scale expansion scheme in detail. Its time resolution is day by day, spatial resolution is 250m, and data coverage is in the middle reaches of Heihe River, unit: mm. The projection information of the data is as follows: UTM projection, 47N.

0 2020-03-08